[image: Book Cover]
[image: Thanks]

[image: Thanks]

Imprint
Published 2015 by Smashing Magazine GmbH, Freiburg. Germany.
Printed in the EU.
ISBN (Print): 978-3-945749-21-0.
ISBN (Amazon Kindle): 978-3-945749-27-2.
Cover Design by Jessica Hische.
Cover Illustrations by Guillaume Kurkdjian.
Layout and Typesetting by Markus Seyfferth.
Editing and Quality Control by Vitaly Friedman.
Copyediting and Proofreading by Owen Gregory.
eBook Production by Cosima Mielke.
Syntax Highlighting: Prism by Lea Verou.
The book has been written and reviewed by Andrew Clarke, Ben Callahan, Chris Coyier, Dan Mall, Dmitry Baranovskiy, Eileen Webb, Emily Gray, Jake Archibald, James Williamson, Lisa Maria Martin, Marko Dugonjić, Sara Soueidan, Viljami Salminen, Vitaly Friedman and Zoe Mickley Gillenwater.

Table Of Contents
Imprint
A Responsive Way Forward
by Vitaly Friedman
The Modern Responsive Designer’s Workflow
by Dan Mall
Responsive Process
by Ben Callahan
Responsive Design Patterns And Components
by Vitaly Friedman
Content Choreography In RWD
by Eileen Webb
Mastering SVG For Responsive Web Design
by Sara Soueidan
Building Advanced Responsive Modules With Flexbox
by Zoe M. Gillenwater

A Responsive Way Forward
By Vitaly FriedmanResponsive design hasn’t made things easier, has it? The flourishing diversity of web landscape from form factors to connection types to input modes to browsers has only amplified the unpredictability of user experiences on the web. This unpredictability is remarkably difficult to tackle unless you embrace the inherent fluidity of the web as a guiding principle in your work. In many cases, going responsive seems like the most reasonable strategy for covering the entire spectrum of user experiences, ranging from tiny viewports to ultra-wide HD screens, with a wonderfully convenient, and often deceptively sneaky one-codebase-for-everything approach.
We’ve learned by now that responsive design is much more than that. Responsive design affects everything and everybody in the design process, and in practice, more often than not, a few media queries, fluid grids and flexible images just aren’t enough. Screen considerations alone aren’t enough either. We have to entirely rethink and relearn our design practices, tools and processes, adapt new technologies and break down complexity of UI components, deal with performance issues and hostile rendering environments and apply content choreography to keep priorities and structure intact.
As a result, the craft of designing and building websites has become complex and elaborate, often difficult to estimate, test and support; and it seems that everybody is still trying to figure out just the right techniques within just the right design workflow to create fast, scalable and flexible design systems. Responsive design ain’t easy, but it doesn’t mean that it has to be difficult if you have a good process in place, with a knowledgeable team, and a versatile set of reliable design patterns.
When we set out to create this book, we wanted to explore just that: design workflows, front-end techniques, UX strategies and design patterns that would help web designers and developers get better results, faster. The result lies in your hands now: a compendium of techniques, strategies and patterns that work well in real-life responsive designs written by well-respected designers and developers spending every day crafting and maintaining responsive websites on both small and large scales. Think of it as a handbook with practical guidelines and precise pointers that will help you tackle any level of complexity in responsive design, intelligently and efficiently.
As you can see, the book isn’t particularly small, and we hope that you’ll discover quite a few useful gems in here. All links mentioned in the book are also collected on www.smashing-links.com. We hope that by the time you flip over the last page, you’ll feel empowered to craft accessible, fast and flexible responsive websites that will stand the test of time and unpredictability whatever devices come next. Happy reading!
Vitaly, editor-in-chief of Smashing Magazine

[image: Chapter Illustration]

The Modern Responsive Designer’s Workflow
By Dan MallIn our industry, we are often subject to three things: titles, tools, and output. We sort ourselves into buckets based on our job titles: designers, developers, content strategists, information architects, and others. It’s often cleaner that way. We sort ourselves by tools as well. Designers use things like Photoshop and Sketch, and developers use things like Sublime and CodePen. If you walk by somebody’s desk, and they’re using Omnigraffle, it’s likely they’re an information architect.
We’re also categorized by output: designers are expected to produce comps; developers are expected to write code. Our deliverables and output are severely outdated, limiting the squishy, giddy, icky, amazing, multi-device world that we live in.
We’re good at placing ourselves within these specific buckets, but what often goes wrong in projects happens within gaps between the job descriptions and deliverables lists.
When I started my design collaborative called SuperFriendly, I was determined to find a new set of tools and outputs to better suit the people who hire us and to better serve their customers. I had a few specific goals in mind that I wanted to achieve, goals that would make my workflow more productive and more efficient.
First, I wanted to figure out how to achieve the highest fidelity in the shortest amount of time. The second goal was to remove abstractions wherever possible, so I could clearly see what I was designing and building. The third goal was to ensure that during the process, all deliverables would come with conversation.
To this end, I found that I often prioritized frameworks over processes. As an industry, we talk a lot about processes, but I find it more useful to think about what frameworks I want to put in place.
Consider this example. A Newton’s cradle is a process. It’s a repeatable system that’s optimized for efficiency, not innovation. It always starts the same way: you lift a sphere on one of the ends, release it, it hits the one next to it, and it continues in that system. It doesn’t deviate from that system. There’s nothing surprising about it; there’s nothing unexpected about it. That’s what it’s good for.
By contrast, a football field is a framework. Every game is the same length; it’s played on the same type of field; it follows the same rules. Everyone knows where out-of-bounds is, and everyone knows where the goals are. Yet what happens within the ninety minutes is a surprise every time.
I wasn’t looking for a process for my agency — I was in search of a new framework. One that would work well with my workflow. After a lot of experimentation, failing and trying again, I found what works very well within general project constraints, at least for me. This is exactly what this chapter is about: a couple of things that I found in my responsive design workflow, with a few techniques and ideas that have proved useful in my own work.
Planning
The first piece of that framework might sound remarkably unremarkable: designers should be more involved in planning. Conducting interviews are a great way to start planning.
Recently, I was working on a project for a magazine with a primarily female readership. Before we did anything — before we did any comps or any information architecture — we just spent some time interviewing.
We talked to readers of both the print magazine and the current website, and found things we couldn’t have assumed otherwise.
When we went to the kick-off meeting with the client, we brought a deck of observations we gleaned from the interviews. We weren’t making any recommendations at that point; we were just saying, “Here are some things we found interesting, and we’d like to have a conversation about it.” We found that:
•Most readers are obsessed with Pinterest. While that might have been a safe assumption, we heard specifically from actual readers that they often have Pinterest open at the same time they’re reading the magazine.
•An unexpectedly high number of these readers mentioned something they called “emotional context” while they were reading. That seemed to be a striking phrase that was common among interviews.
•They didn’t use the navigation very much. They often just browsed along with the content and used search as a last resort, but often skipped the navigation.
•Surprisingly, readers expected commercial offerings as a service of the website. Many of the readers we talked to said, “I would love this magazine to tell me what products to buy.” That was a huge advertising opportunity, and something the client had never done before because they just assumed that readers might think it was pushy advertising and skip over it. But the readers trusted this brand so much that they wanted recommendations for products to buy. They were leaving millions of dollars on the table simply because they hadn’t even talked to people about it and had dismissed it.
[image: By conducting interviews, you can learn a lot about the product and what it lacks. These insights can then be grouped, ranked and presented as a deck.]
By conducting interviews, you can learn a lot about the product and what it lacks. These insights can then be grouped, ranked and presented as a deck.
Interviewing is a very valuable skill in a designer’s toolkit. It’s a simple technique that can empower you to make the right decisions and smart design choices for your clients. We should use it more meaningfully and more often.
On that project, I worked with Jennifer Brook, a great user experience designer and researcher. Jennifer always asks me to hypothesize. When we work together, she usually prompts me with questions and thoughts like this:
“As an experienced professional, what do you think should be on the site? Tell me your vision for the site, and I’ll go find research that supports it. But, if I instead find research that refutes it, I’ll come back to you with that research and we can adjust the hypothesis together.”

We don’t hypothesize enough as an industry.
We should be guessing more. Let’s validate our hunches with research, but don’t be afraid to take some guesses.
Writing-First Design
Before I start designing anything, I write. When I have trouble designing, rather than trying to force my way through Photoshop and design tools, I put the tools aside and jump into a text editor instead. I write manifestos for myself (I’ve also heard them called creative briefs, strategic briefs, or communication briefs).
Basecamp’s designers have been following a similar approach for years. Instead of jumping into a visual tooling environment, they prefer “writing-first design1”, whereby interfaces and interactions are sketched out in a text editor as plain text first, and are enhanced and refined with visual assets later.
One tool I’ve found useful for this is Ommwriter2. What I love about it is that it forces me to go fullscreen, and it will give me either a handful of subtle backgrounds or a plain blank one. Ommwriter also provides the option to play ambient background music. It compels you to focus and prevents distractions. I love this isolationist version of writing, where you’re perfectly alone with your thoughts and a blank canvas.
I also tend to use Notational Velocity3 a lot, and particularly a fork of Notational Velocity called nvALT4, which supports Markdown. It’s pretty much on every machine I use for work, and it’s on my phones, too. What makes nvALT so useful is that it’s easy to sync notes back and forth, so you always have your notes synced without having to put them into Dropbox or email yourself. Having a tool like that is handy because I always have my thoughts accessible to me no matter where I am. In fact, this little tool has been one of the greatest design tools for me — a virtual, digital notepad wherever I go.

So how exactly does a manifesto help in the design workflow?
A good manifesto has to contain creative direction, a point of view, a perspective. Without strong creative direction, everything feels a bit too vanilla. I love vanilla as much as the next person, but sometimes I want salted caramel. To create something memorable and unique, you need a very distinctive idea, a different angle: that’s what creative direction is. Flat design isn’t a point of view. CSS transitions are not a point of view either. A good manifesto should go beyond that, saying what you’re going to do and, more importantly, what you’re not going to do.
Let’s make this clearer by looking at one example with a strong creative direction and another without. What you see below is an architecture of a website. Could you guess what site it is?
Explore | Albums | Songs | News | Store
Perhaps you could narrow it down to being the website of a band? But which band? It’s hard to tell which one. The reason for that is that the architecture here is vanilla. While it works for a lot of bands, it doesn’t work for a specific one because it’s so generic. It doesn’t provide any help for you to identify precisely which band because there’s no unique perspective that relates to a particular group.
Let’s look at another example:
Songs | John, Paul, George & Ringo | From Liverpool to the Hall of Fame | News | Store
That’s right: this site structure makes the band much easier to spot. This is the architecture for the Beatles website. This has a point of view, a perspective. What kind of manifesto could lead to an architecture like this? I imagine it could look something like this:
The Beatles are the greatest band of all time. Their songs and history are deep and dramatic tales; few institutions have been loved the world over for so long. The range of music they performed spanned many genres. Their music became much more than entertainment; it evolved into an embodiment of ideals that well-represented its era. Their website should reflect that richness from every angle.

Admittedly, that’s pretty assertive, but notice how much of a point of view it has. This is something that can’t be mistaken for another organization. A vision like this can’t be mistaken for another band. This type of bold approach is severely lacking on the web today. If the web had stronger creative direction it would be much easier to identify brands (and bands), what they stand for, and whether or not you wanted to be associated with them.
If you’re interested in what manifestos or creative briefs contain, there’s a very good article by Jared Spool called the “The Magical Short-Form Creative Brief5.” It offers some very helpful tips on what a good manifesto or creative brief should have in it, including the project objective, the key personas, the key scenarios and the key principles.

If you look at the planning tools I’ve outlined above and at the output they provide, it looks quite different from a designer’s usual output. Thinking differently about your skills and tools opens up more opportunities for the types of activity that you could be doing to add value for your teams and co-workers and clients.
Inventory
We could spend a lot of time planning what we are about to design and build, but to do it efficiently we need to have a clear understanding of the guts and inner workings of the interfaces in a project. That’s why the second part of my framework is Inventory. There are many different kinds, but the first type that I tend to use a lot is an interface inventory.
[image: Interface inventories help us to regain the consistency and sense of control in the design process.]
Interface inventories help is to regain the consistency and sense of control in the design process. (Source: http://bradfrost.com/blog/post/interface-inventory/6)
In the example above, front-end designer Brad Frost conducted a thorough inventory of all of the buttons on his bank’s website. The sheer amount of buttons used throughout the website was a clear sign of inconsistency deeply embedded in the design. It’s one single brand, but there are so many different colors and typefaces and sizes and proportions that it might be hard to believe that all these interface elements co-existed on one website.
Drawing up inventories can be immensely helpful. Whenever you’re lost, disappointed or disillusioned somewhere in the middle of your project, conduct an interface inventory; it will help you stay on track and regain confidence. Sometimes projects start to slowly drift away from you, gradually becoming inconsistent and fragmented, and there’s no easy way to notice that until it’s too late. Interface inventories help you prevent this from happening. They help you notice what disparate elements you might have, so you win back a feeling of control in which you are building a scalable design system instead of a loose set of components or common layouts.
[image: Interface inventory]
[image: Interface inventory]
Interface inventory conducted by Jason Santa Maria when working on Editorially.
Designer Jason Santa Maria used exactly this approach when he was designing the app Editorially. He conducted an inventory of all the different interface elements that he had created and noticed just how much disparity there was across them. He decided to consolidate some of those elements: some were similar enough that they could be combined into one while others needed to be refined. The interface inventory also revealed the gaps that existed, and Jason was able to create a few more components to cater for scenarios he hadn’t considered previously. The inventory alone helped him set up a sound foundation for a style guide. That style guide was then able to transition to front-end development and helped everybody involved in the project.
[image: Interface inventory]
Apparently there are a number of ways to design a link to an article. Grouping and prioritizing options helps establish consistency and hierarchy in a design.
When I was designing the new O’Reilly site7, I did an interface inventory in the middle of the project. I realized I had designed 22 different ways to link to an article: everything from a title with an image to a title with a deck; a title with a deck and a byline; and a title with an image, a deck and a byline. It was just way too much. We didn’t need that many elements. By designing one piece at a time, we reached a state where there were too many different states for our own good.
We decided to consolidate. We created categories called “Definites” and “Maybes”, and ended up with three definites and two maybes. Going from 22 to 5 allowed us to work with a much tighter set, which was ultimately better for our working team, the client, and the users of the site.
Performance Budget
Visual components aren’t the only area that can benefit from inventories. Performance budgets are another helpful type of inventory.
Recently I worked on a project for Radio Free Europe/Radio Liberty, an organization that reports news in countries where the free press is banned by the government or not fully established. Their work can be dangerous: people have been incarcerated or even hanged for accessing the content. We heard stories about places like Uzbekistan, where people were crossing borders illegally just to read the content on the website; that’s how important this content is to their readers.
Performance was an extremely important consideration for this project — it could literally be a matter of life and death. Radio Free Europe was already working intensely to achieve good performance, doing smart things both on the server and the client progressive enhancement to ensure that core content was loaded as quickly as possible even the slowest connections. They serve hundreds of millions of page views every month, powering 150 sites in over 60 countries. Their readers face very hostile environments; many of their readers access the content exclusively on mobile devices where 3G is the fastest possible speed.
Because we were talking about performance, we started to use new tools. One of those tools was WebPagetest.org8, where you can plug in the URL and see how well it performs under different connection types. WebPagetest grades websites using a few specific metrics such as first byte time, start render time, speed index, and how well the images are compressed. It gives you recommendations to improve those metrics and consequently improve the performance of your site.
Based on this data, we decided to create a performance budget to ensure that performance was prioritized from the very start of the project. The site should be fast, but just how fast is fast enough? We ran the current Radio Free Europe site through WebPagetest. As we ran it through, the tool returned a set of numbers: 4.193 seconds for “Start Render”; 5.565 seconds for “Visually Complete”; and 7.93 seconds for “Fully Loaded”.
[image: performance budgets]
Performance budgets don’t look fancy: they’re just a spreadsheet with metrics and performance goals. In this case, our goal was to be at least 20% faster.
Once we had our data for those metrics, the next thing we could do was gather the data from our main competitors, just to make sure that we were at least on a par with them. Radio Free Europe is a news site, so they don’t have competitors in the traditional sense, we inventoried sites Radio Free Europe admired. We gathered data from sites like National Public Radio (NPR), the Guardian, Al Jazeera, and the BBC. Surprisingly, the Radio Free Europe was the fastest of the bunch.
We could have stopped there, but we didn’t think that was good enough. Tim Kadlec, my developer on the project, wrote a post a few months before this project called “Fast Enough9.” In the post, he highlights some fieldwork in researcher Steven Seow’s book Designing and Engineering Time10 that suggests people perceive tasks as faster or slower when there’s at least a 20% time difference. We didn’t just want to beat the other sites in terms of speed; we wanted regular readers of Radio Free Europe to notice an improvement in loading time for the new site.
We looked into those initial timings — “Start Render”, “Visually Complete” and “Fully Loaded” — and calculated what we should aim for, shaving 20% off the fastest results we discovered. Instead of starting to render in 4.19 seconds, we wanted the site to start in 3.35 seconds. We wanted the site to be “Visually Complete” in 4.46 seconds, not 5.57. This simple calculation provided us with times to target.
But that wasn’t enough, because we really need page weight to make this actionable in a design process. All of these times we were using WebPagetest’s suboptimal mobile 3G speed, which is 768 kilobits per second with a 300 milliseconds round-trip time. We measure page weights in bytes, not bits, so we have to do some conversion. 8 bits is equal to 1 byte, so...
768kbps ÷ 8 bits/byte= 96 kilobytes/second.
We can use that number to create some handy conversions. Here’s our handy formula:
Target time (in seconds) 96 kb/s = Target weight (in kb)
If we want the site to start rendering in 3.354 seconds, we do:
3.354s 96 kb/s = 322kb
That’s the maximum page weight we can have in order to get the site to start rendering in 3.354 seconds or less on a 3G connection.
We can use that number as a ballpark figure for the assets we need on the site. Those assets usually come in these five categories:
1. HTML
2. CSS
3. JavaScript
4. Images
5. Web fonts
Using HTTP Archive11, we can find some average weights:
•The average HTML page weighs about 60kb
•The average CSS file weighs about 58kb
•The average JavaScript file weighs about 295kb.
When we add those up and measure it against our target kilobyte weight, we get 413kb (60kb of HTML + 58kb of CSS + 295kb of JS), which is already 91kb over our 322kb Start Render budget. If we followed the average usage of all those assets, we wouldn’t even have any images or web fonts on the new site!
Now that we know what to expect from the average size of a page, we can do some budgeting.
Perhaps we talk to our developer and ask if there’s any way we can get that JavaScript number down. She might say, “I’ve been meaning to try a project without jQuery and just do plain old JavaScript.” If we strip the 266kb jQuery out of our 295kb JavaScript file, that gets us to 29KB, which leaves 175KB left in our budget. We could split that between images and web fonts, giving us about 87KB for images and 87KB for web fonts: perhaps four 20kb images, and about six 15kb web fonts on a page. Here’s what that complete budget would look like:
•HTML - 60kb
•CSS - 58kb

•JS - 29kb
•Images - 87kb
•Web fonts - 87kb
•Total - 321kb
We can even optimize a bit further. You now have a budget for six web fonts, but you might not need all six; perhaps you can get away with just four. If we reallocate some of that weight, we could move two web fonts’ worth (~30kb) over to images, giving us a new 117kb budget for images (roughly 5 images at 20kb each) That budget would look like this:
•HTML - 60kb
•CSS - 58kb
•JS - 29kb
•Images - 117kb
•Web fonts - 57kb
•Total - 321kb
For designers, this kind of information is incredibly liberating to have before starting a design. Knowing that I can use six images and four web fonts before jumping into Photoshop means that I’m using performance as an ingredient in the design process, rather than trying to squeeze it in afterwards. We do our best work under constraints, and knowing this constraint up front is invaluable.
Visual Inventory
American philosopher Eric Hoffer once wrote, “Language was invented to ask questions. Answers may be given in grunts and gestures, but questions must be spoken. Humanness came of age when man asked the first question.”12
When I start a design, I have many questionsWhat colors and typefaces should I use? Should there be an underlying metaphor or concept to this design? Is showing the application on a shiny laptop the best way to sell it? Can the brand pull off a minimalist design approach? Should the copy be more playful?
Our industry’s typical response is to craft three comps representing three different directions: one comp to explore and answer each major question individually. While a comp is one of the highest-fidelity types of deliverables, they’re a major time commitment to create, especially when we end up throwing away the majority of that work once a client picks one of three directions. In my experience, we lose far too much time in the process by crafting comps — it’s doable and sometimes necessary but extremely time-consuming. There has to be a better, smarter way to do this.
Rather than starting my design process in Photoshop or Sketch or Illustrator, I tend to start to use Keynote. When a client asks for a “playful” design, I could create an original “playful” comp for them, but that may take a few days. Instead, I’ll create a default Keynote document and paste in a screenshot of a “playful” website — like the GoGo squeeZ13 site. I write a little blurb next to it, like, “How playful and whimsical should the new site be?” For instance, the GoGo squeeZ site is full of smiles and catchy illustrations that make you grin as you explore the site.” I’ll also Photoshop the client’s logo into the screenshot as a simple way for them to see themselves in a different way. I’ll compile 10 to 20 of these to send over, which I call a visual inventory.
[image: Crafting comps takes time, but you can explore art direction through existing examples in a Keynote presentation.]
Crafting comps takes time, but you can explore art direction through existing examples in a Keynote presentation.
Remember “the highest fidelity in the shortest amount of time” from the start of this chapter? How do we achieve that? Obviously, a comp has very high fidelity, and it’s the most realistic version that you can achieve (or almost, short of building the actual site), but it always takes a lot of time to get there. On the other hand, a visual inventory achieves a high fidelity that is close to a comp in terms of its actual look and feel. Photoshopping the logo takes a short amount of time. Highest fidelity, shortest amount of time.

[image: Showing different styles alone is often enough to start up a fruitful conversation on the art direction of a site]
Showing different styles alone is often enough to start up a fruitful conversation on the art direction of a site.
Feedback on a visual inventory can start to give you a checklist of things the client responds well to. For example, they might think flat design isn’t a good fit for their brand, but highly saturated design is; or that software as lifestyle is not a concept that’s going to work for them, but a case study-driven site would work better; or that the tone might need to be more professional than playful.
We can start receiving precise, helpful answers to all those questions within a much shorter amount of time. Unlike mock-ups or comps which take a few days or weeks in Photoshop to produce, a visual inventory can be put together within a few hours. It’s a helpful shortcut that allows you to avoid spending too much time and effort on things that won’t make it in the end. Instead of making random guesses, you're working with tangible, concrete material that will find its way into the final result.
I published a little article14 about the visual inventory technique and have Keynote and PowerPoint templates if you want to get started with one.

As designers undertake more inventory, we’ll more often use tools like WebPagetest, Excel and Keynote to make assets like visual and interface inventories, and performance budgets. Again, that’s very different from what we’ve been used to. In my experience, these are the most valuable tools that modern designers need to know and use — and use well — in order to adapt to the complexity of the multi-device world we have.
Sketch
Planning first, inventorying second: what’s next? The third piece of my framework is sketching. I don’t necessarily mean sketching with pencil and paper, although that’s certainly useful as well. By sketching, I mean being able to generate and refine ideas quickly.
Element Collages
Two years ago, I worked on a project with an organization called Reading Is Fundamental15 (RIF). They have one simple mission: to give books to kids who had never had books. RIF found a significant correlation between communities with low literacy and low-income levels, high crime rates, and high welfare payments. By increasing literacy, crime rates fall, incomes and graduation rates rise, and the government pays less welfare in the affected areas.
[image: Listening at the first meeting. These keywords will be used later as visual hooks to transform ideas into an actual design element.]
Listening at the first meeting. These keywords will be used later as visual hooks to transform ideas into an actual design element.
During our kickoff meeting, our team spent a lot of time listening, asking questions and sketching. The photo above is a shot of my notebook sketches from that meeting. I always try to pay attention to important keywords and recurring themes that arise in the conversations. The RIF team repeatedly mentioned particular words and phrases that were important to them. They kept saying “electric” when referring to their brand. They also repeated the words “shape,” “book,” “heart,” and “bubble.” They kept saying “visual book lists,” “pages themed in books,” and “turn the page for step two.” Those words alone brought rich imagery and metaphors to my mind.
[image: As you design more elements, the element collage becomes more refined and detailed.]
As you design more elements, the element collage becomes more refined and detailed.
We weren’t scheduled to start the design phase for another couple of weeks; we were going to do some content work first and understand the structure of the site a little bit more. When I got home, however, I couldn’t help but hear their words in my head. I opened Photoshop and created an empty canvas. I just wanted to illustrate, to do some sketches of what these concepts could look like.
Obviously, at this point I had no idea what the art direction would be. I didn’t know whether the color was right or the typeface appropriate. But it didn’t really matter at that point. I just wanted to get a few ideas out of my head and into pixels.
What does “turn the page for step two” look like? Maybe it’s a button that flips over like a page turn when you roll over it. That led me to think about what could be displayed on the other side. A color change? Suggested donation amounts?
The same goes for “visual book lists”: what would that look like? An interface that allowed kids and parents to browse the site visually, and find books they like — what would be a good representation look like? “Pages themed in books”? How could I play on affection and nostalgia for stories like Harry Potter or Goldilocks and the Three Bears and get people to donate or take action based on that?
I’m no copywriter, but I had a lot of fun writing copy for those elements.
One of my favorite parts of designing an element collage is that it gives me a chance to design the things I’m excited about without worrying about the rest. When you create a comp, you might not have an idea for the footer of a site, but you can’t just skip it; without the footer, your comp is incomplete. With an element collage, however, you can really just focus on the things you’re most passionate about.
The other nice thing about an element collage is that it gives you the opportunity to show your clients how well you listen. Clients often have ideas that they’ve been refining in their head for a long time; an element may be your first opportunity to help them visualize it. One of my favorite parts of every project is helping turn clients’ powerful phrases into visual hooks. Clients will tell you what’s important to them — sometimes we just don’t listen for it. If you listen hard enough, they’ll tell you exactly what they want to see.
After I had all the different elements for RIF placed on a Photoshop canvas, I created a new document and placed all these elements down the center as if it was a long scrolling webpage. That page included a variety of elements, from carousel states to typographic explorations, donation ideas, book reviews, and more. Frankly, I didn’t know if we were even going to have book reviews on the site at that point, but this visual exploration helped me discover a direction for the site that influenced every phase of the project.
Getting these ideas out of my head led me to helpful conversations that influenced the information architecture. A typical waterfall process for web design tends to start with information architecture leading into graphic design and then development, but a framework that allows every piece to influence the others is an incredibly powerful opportunity. The element collage I did for RIF allowed our team to sort out some information architecture decisions. In a new responsive framework, all of those things can be rearranged to great benefit: you could have IA influencing design, but also design influencing IA. You strike a nice balance, a nice back-and-forth between all the disciplines involved in the design workflow.
When I showed the element collage to the clients they said, “Obviously this isn’t a website, but I see how it could be one”—a great client’s perfect response to a modern design deliverable. At every stage of the web design process, we ask our clients to imagine the next one. We explain ideas and expect them to imagine what the site will look like. We show wireframes and expect them to imagine what they will look like after we’ve applied typography, color and layout. We show a layout and expect them to imagine how the rollover states will work. When a client tells you they can easily imagine, you’re in a great place.
The most successful projects are the ones where we’ve successfully asked our clients to imagine, and they can. The feedback I’ve received from clients tells me that it’s possible and that this approach is helpful in achieving that.
To approach the complexity of today’s web, we need to be strategic in how we craft websites. We need to build scalable, flexible design systems. By deconstructing the design into simpler components and elements, we build a solid foundation for responsive design — but most importantly, we can create this foundation quickly without spending too much time polishing comps.
Showing an element collage to a client instead of a comp might sound like a scary proposition. But the main problem with a comp is that it’s a moment in time, one that may never exist for a particular user. When you make a deliverable like an element collage, you’re intentionally removing the context of a specific moment in time and instead replacing it with a collection of moments. You’re helping your clients understand the overall narrative and asking them to imagine the chapters. Rather than showing them every screen at multiple sizes, you’re teaching them how to imagine it on their own. That’s a much more valuable offering that you can deliver.
A useful detail that helps clients understand the idea behind element collages is displaying interaction states, like rollovers or animation states. Since we aren’t showing a webpage, those kinds of “visual tricks” are a very good way to make it clear to clients that what they’re looking at isn’t an actual webpage. This reduces confusion and helps avoid conversations like, “What page of the site is this?”
[image: An element collage for TechCrunch, containing type treatments, social media buttons and more.]
An element collage for TechCrunch, containing type treatments, social media buttons and more.
Once I started using element collages, I began to discover more and more situations and responsive projects where they made sense — and significantly sped up the design workflow. For the next project I worked on, the TechCrunch redesign16, we also created an element collage. Because TechCrunch is a technology news site, we spent a lot of time exploring typography and type combinations to make sure that the type was beautiful yet also very functional. TechCrunch publishes 80 to 100 articles a day, so we knew that typography and the reading experience were critical.
It wasn’t enough to rely on tools like Photoshop, Illustrator or Sketch. We needed to set type in the browser and have access to a huge catalog of typefaces. We used Typecast17, a tool that increased our access to typefaces we didn’t have. I love buying typefaces, but there are only so many I can buy without going broke.
With Typecast we knew that whenever we applied a typeface, the result was literally what it would look like at the final stage. Showing the typeface in the environment where it would be read was a huge benefit. Working within the medium helped us avoid wrong decisions and notice the smallest inconsistencies right away in its native environment. I was able to design some components in Photoshop, set typography online in Typecast, take screenshots and then bring them into Photoshop and work with them there. Going back and forth between browser and Photoshop worked really well.
For TechCrunch, we looked specifically at things like sharing clusters and breaking news elements. Through this process, we were able to refine a typographic hierarchy even before we did anything with the layout of the site. We spent a lot of time on typography, nailing down the nuances of what articles, headlines, body copy, and all the typographic elements would look like — and eventually putting everything into a growing element collage.
Horizontal Element Collages
More designers and agencies are starting to use element collages these days, including UK design agency Clearleft. In one project, the Clearleft team sent an element collage to a client, only for the client to believe they were looking at a half-finished webpage. To fix this, Jon Aizlewood at Clearleft adopted a wide horizontal canvas instead and increased the size of some elements, “so that the discussion revolves around the overall visual aesthetic, rather than the pixel precision and font sizing of certain components.”18
[image: Horizontal image collage]
An horizontal of a vertical element collage.
This change helped the clients move away from the webpage paradigm towards a clearer canvas view with a distinct connected system of components that will comprise a page later in the process. This early stage is an exploration of compound units of a design, and it shouldn’t be confused with an actual output.
[image: A horizontal element collage for Entertainment Weekly.]
A horizontal element collage for Entertainment Weekly.
I loved that horizontal approach, so I decided to try it out in my next project. When we worked with Entertainment Weekly19 on the design of their mobile site20, we decided to produce a horizontal element collage, which worked well for everyone involved. We had very productive conversations about the elements, and we never once had to explain the purpose or goal of the canvas. First, we had the right conversations with the client, so when we showed them the collage it felt like a natural part of the process — it was pretty much what they expected and didn’t cause any confusion. The client had no difficulty understanding those elements as building blocks of an upcoming page. If you want to make it very clear that what you’re designing isn’t anything close to an actual webpage, horizontal element collages are a great choice.
On Designing in the Browser
Not every designer (and not every client) will feel comfortable with designing element collages instead of webpages — at least at first. I spoke with Paul Lloyd, one of the designers at Clearleft at the time, about this process as well. When I talked to him about what he liked about element collages, he said:
“You know when you’re in Photoshop, and right before you send something to a client, you turn off a bunch of the layers, because they’re the ones that you don’t want them to see? Element collages are like giving your client a peek at all those hidden layers. You’re showing them all the different variations of things; you’re not just showing them the final thing that you’ve decided to reveal. You’re making them part of the process.”

You might be thinking, “Well, element collages are really good, but why bother with that stuff and design it all in the browser instead?” Well, I’ve got a couple of qualms about designing in the browser.
When people talk about designing in the browser, they often mean just skipping the design phase entirely and jumping straight into building something. Construction workers need blueprints. CGI artists rely on sketches, previs, and small-scale models. Design isn’t just theming or skinning components in the browser — it’s about honing a concept, and that’s difficult to do in the browser.
Most importantly, sites designed in the browser look like no one considered the visual treatment, or the art direction, colors, and typography. You can’t just color a wireframe and call it good design.
To be fair, I don’t think that’s anybody’s fault. It’s the fault of our tools. We don’t have the right tools to allow us to design in the browser in the way that we could. Consider for a minute the way that we code. We open up a code editor, and we type. We don’t see what we’re doing. We save, and we switch to a browser and refresh — and it’s always a surprising jack-in-the-box moment. Sometimes we see something we like, but more often we see something else, perhaps due to a bug, so we go back to the code and revise it and then — jack-in-the-box again. That’s a problem with the way we use our tools; it’s a problem with the way we code.
In a presentation called “Inventing on Principle21” given in January 2012, Bret Victor talks through a code editor prototype he built that shows changes in realtime. He shows a particular tool that gives him an accidental idea about the functionality and experience of the game he’s building. “How would I ever have discovered that [animation idea] if I had to compile and run each and every change? So much of creation is discovery, and you can’t discover anything if you can’t see what you’re doing.”
Perhaps rather than designing in the browser, we could be deciding in the browser. We often regard Photoshop as the primary tool where all design decisions are finalized, but I think we should treat Photoshop as the place where ideas can be initiated, and the browser as the place where those ideas can be finessed. We could think of our tools as lying across a spectrum, not simply as a binary choice. The earlier in the process, the more useful an expressive tool like Photoshop; later on, the more useful a production tool like Sublime Text or the web inspector.
Prototyping
Here’s how I think designing in the browser should really work. I worked on a project with my friend Jamie Kosoy22, and Jamie has a unique way of writing code. He refers to himself as a developer, but I think he’s very much a designer — he just uses code to do it.
What I love about working with Jamie is that he’s not one of those developers who waits for the design to be done and then just codes what’s been delivered in the comp. When we work together, I start my work on day one and he starts his work on day one, too.
How does it work? Jamie has very specific guidelines for sketching in code:
1. Each prototype must take less than one hour to make. If a prototype takes longer than an hour to create, it’s not a prototype anymore — you’re building something, and that’s not the point of sketching, whether in code or not.
2. The first prototype should be something that anybody can build. The second prototype gets increasingly more complex, as does the third and the fourth and so on. More on this in a minute.
[image: Crude sketching in code]
Crude sketching in code.
3. Build ugly. If you take a look at the screenshot above, what you see on the right-hand side is the comp, and what you see on the left-hand side is a fully functioning, ugly prototype.
When most people build prototypes, they end up being so similar to a finished product that it’s “good enough.”No one ever goes back to put the final polish on “good enough.” You’ve got bigger fish to fry, and, hey, it’s “good enough.”
If you build ugly though, you have to go back. You cannot launch an audio player that’s a bunch of lime green boxes and Comic Sans text, even if it’s full functional. You’re forced to go back and finish it. That’s the value of building ugly.
[image: An evolution of a sketch: from a crude early mockup to refined working prototypes.]
An evolution of a sketch: from a crude early mockup to refined working prototypes.
Two years ago, Jamie and I worked on a project for a big technology company that rhymes with Moogal (you probably have never heard of them). As we do, we brainstormed together before doing anything else and ended up with the idea that you should be able to see the product “from all angles.” We didn’t specify whether that meant metaphorically or physically or literally. From there, we both started exploring different options and routes we could take in our own ways.
I went off and designed the sketch above. I didn’t have any navigation; I didn’t even know if that was the right copy. It was just a starting point. If you look at the image above, on the left you see my sketch and on the right is Jamie started with this sketch. Remember guideline #2: something that anyone can do. It was a green <div> that had a width and a height. That’s prototype number one, and it’s finished.
Once he had this first prototype, Jamie moved on. Second prototype: skewing it with CSS transforms. Something that anyone can do, but with a little bit more knowledge.
Third prototype: adding another face.
Fourth prototype: adding a third face to create a 3-D box. This is something that most people who write HTML and CSS can do, but it’s a little bit more advanced than just putting a <div> on the screen. Every single prototype was another step taken, another decision made.
If Jamie ever has to bring another developer into the project and they don’t know how to do what Jamie’s doing, they can figure it out by tracing the steps in his prototypes. Normally, that’s just lost in the Git history. By seeing all the prototypes, you can go through the history and get a better idea of what’s happening behind the scenes. Every prototype has a unique URL, so you can go to 001 and 002 and 003 and 004 and see all of the prototypes right there. Each prototype is designed to solve one and only one problem, and once it’s solved, Jamie moves on to the next one.
After working this way for a few days or a few weeks, Jamie will have hundreds of prototypes that do one thing and one thing only. Prototype #76 will have solved using the History API. Prototype #25 works out a unique navigation interaction. Prototype #98 is a demo of the animation in the footer. Once you have everything worked out individually, you can start to put them together. Combine prototypes #11 and #52. Combine #29, #41, and #6. Finally, once you combine enough prototypes, you realize you actually built an entire site. That leads us to our last piece of the framework: assembly.
Assemble
The hard work in building a great, modern responsive site is in figuring out what you want to make. You figure that out through smart planning, exploratory inventorying, and uninhibited sketching. That stuff takes the most mental and physical effort. Then you put it together, which is the easiest and least time-consuming part — if you’ve done it right.
In cooking, there’s a principle called mise en place, which translates literally to “putting in place.” Ask any good chef, and they’ll stress the importance of good prep. You don’t start chopping the onions when the chicken’s already in the pan. You do all your preparation long before service. You chop your onions and slice your cheese; you put your peas in a bowl and strain your soup. When you’re ready to cook the dish, you pick up the ingredient you need, throw it into the pan or sprinkle it on afterwards and the meal is finished — much quicker.
We can apply this principle to the way we think about our work. If we’ve prepared everything well — the planning, inventorying and sketching — then all we need to do is assemble the pieces.
[image: Libraries in Photoshop allows you to store particular components and then drag them in when you are building a website.]
Libraries in Photoshop allows you to store particular components and then drag them in when you are building a website.
One of the greatest new tools I use is a new Adobe Creative Cloud feature called Libraries23. It allows you to store and share elements, so you can simply drag them in from a panel when creating a screen.
WhenI’m putting together an element collage or a style guide, I design all the pieces — comment threads, headers, footers and so on — and I store them in the library. Then I can just drag them in as I’m designing, say, small-screen comps, and within a matter of seconds I’ve created a comp. I might have to change an asset here or there, but that’s not difficult once I’ve got all the parts — I can just assemble it. That’s a fantastic way to work, because I’ve spent all the time planning and figuring out the components earlier on; now I just test how they work together. I’m building pages in minutes, as opposed to days or weeks.
Atomic design24 is an approach to building design systems, rather than a loose set of pages. The design process starts with designing and building components, and as you combine components, you start building parts of the website. At some point you have enough components, so you can start building a page. The page isn’t something we start with, but rather a result of what we are building.

If you prefer code, Pattern Lab25 is a great tool that replicates this idea. Front-end engineer Brad Frost created it while we were working on the TechCrunch and Entertainment Weekly projects together. The main idea behind Pattern Lab is very similar to the process I outlined above, except that it’s done in code. You identify the smallest building blocks — atoms — and you combine atoms together to form molecules. You combine molecules into organisms, and then templates and, eventually, pages. On the technical side, it can be done with any templating language; for example, a series of includes in PHP.
When I worked with Radio Free Europe, our team was surprised how receptive the client was to the entire idea behind atomic design. Throughout the project, we worked through an assembly list at a spreadsheet level, listing all the atoms we were going to have on the site, and combining them into molecules, and then organisms. Instead of talking about comps or pages, we had discussions about each organism, each molecule, within the spreadsheet itself. It allowed us to reach actual results way, way faster. We did our planning in the knowledge of what we were going to assemble at the end.
Remember “highest fidelity, shortest amount of time”? We asked ourselves what was the deliverable that we could have the conversation about that wouldn’t require us to spend two or three or eight weeks working on. We listed all the patterns and atoms and molecules and organisms, and we wrote a little explanation for each, explaining what it did and how it was helpful. Then, for every molecule, we wrote down the atoms required, and all the atoms and molecules required within each organism; this established the relationship between the different components of the site — the very nature of a bulletproof design system.
We started to map the site this way. Although not right for every client, Radio Free Europe was a great client to have this conversation with. This framework gives us the ability to have discussions about elements before we get into Pattern Lab before we have to revise code, even before we start coding. We just had a couple of slides with comments, where the client started to annotate the spreadsheet and ask questions like “Do we need this organism? Isn’t this organism the same as that one? What about these molecules: could we integrate them here?”
[image: Atomic design principles for Radio Free Europe with PatternLab in place, discussed using basic spreadsheets.]
[image: Atomic design principles for Radio Free Europe with PatternLab in place, discussed using basic spreadsheets.]
[image: Atomic design principles for Radio Free Europe with PatternLab in place, discussed using basic spreadsheets.]
Atomic design principles for Radio Free Europe with PatternLab in place, discussed using basic spreadsheets.
The critical point here is that we started having this discussion about development before starting development, which significantly sped up the entire workflow. For us, doing a very quick two-hour inventory rather than taking a day to set up Pattern Lab, allowed us to have a conversation that would profoundly influence our work a lot sooner. It was an incredibly robust and quick process, and it saved us a lot of time and a lot of headaches.
Our assembling tools, then, include Creative Cloud libraries and Pattern Lab, mechanisms to help us bring together elements under the mise en place concept. Each element should be in its place so that when the time comes to serve it, all we need to do is put them properly together, spice them up a little bit and assemble them in the way that works best for the clients and their users.
A Workflow, Before And After
It’s been a long journey, but let’s take a closer look at the design process before and after. Before, our output as designers was just comps — that’s pretty much all we were responsible for. With responsive design and mobile, designing comps is becoming far too slow and time-consuming. But if you take out the only thing we had, what else do we do?
The evolution I’ve outlined provides great opportunities. If you look at the deliverables that we might create, like manifestos, libraries and visual inventories, you can see that they greatly expand our output and get us thinking more holistically about how we can build websites better, and be more useful to our co-workers and our clients.
All our previous tools were layout tools. But if we start combining tools like Typecast, Notational Velocity, Illustrator, HTML5, and Excel, we can find a different way to create more value for our clients and co-workers.
[image: Not only our tools, but also the output of our creative work has changed. Our workflow and our design process have to adapt, too.]
Not only our tools, but also the output of our creative work has changed. Our workflow and our design process have to adapt, too.
You don’t have to be a master of all of these things. If you’re a designer, you don’t have to become an information architect or a developer. But an appreciation and understanding of what other people do and the tools they use can certainly make you better at your work.
Michael Jackson was considered the king of pop, but he didn’t play any instrument. Yet he’s still considered one of the greatest musicians out there because he understood all those instruments intrinsically. There’s a great demo clip of Michael Jackson writing the arrangement for Beat It26. He sings every part: the lead vocal, background vocals, bass line, and minor percussion.
What’s so striking is that it’s not perfect; it’s a sketch of a song. There are times he goes flat when he hits the tonic, but it doesn’t matter. He’s demonstrating empathy. He understands what every contributor to the song is doing, what they need to do, and how he can make them better.
I’m not suggesting that we need to reinvent our roles. What I’m talking about is a natural evolution for a designer. We live in a very different world than we did only a decade ago. People access the Internet from devices that fit in the palms of their hands all the way to giant billboards in Times Square and everything in between.
My challenge to you: expand your tools and expand your output. Now you know what to make.

About the Author
[image: Dan Mall]
Dan Mall is a creative director and advisor from Philadelphia. He coaches agencies and design teams to help whip them into shape. Dan is the founder of SuperFriendly, a design collaborative that brings exquisite creative direction and design to the world’s most interesting and important organizations. Prior to opening SuperFriendly, Dan was Design Director at Big Spaceship and Interactive Director at Happy Cog. He co-founded Typedia (an encyclopedia for typefaces) and Businessology (a podcast and workshop series teaching designers how to run better businesses). Dan is enthralled with his wife and two daughters. He writes irregularly at danielmall.com and tweets often as @danielmall. Image credit: Mark Likosky.

—
1.https://signalvnoise.com/posts/3801-writing-first-design
2.http://www.ommwriter.com/
3.http://notational.net/
4.http://brettterpstra.com/projects/nvalt/
5.http://www.uie.com/articles/short_form_creative_brief/
6.http://bradfrost.com/blog/post/interface-inventory/
7.https://beta.oreilly.com/
8.http://www.webpagetest.org/
9.http://timkadlec.com/2014/01/fast-enough/
10.http://www.engineeringtime.com/
11.http://httparchive.org/
12.Reflections on the Human Condition, 1973.
13.http://www.gogosqueez.com/
14.http://danielmall.com/articles/visual-inventory/
15.http://readingisfundamental.org/
16.http://danielmall.com/articles/techcrunch-responsive-redesign/
17.https://typecast.com/
18.http://clearleft.com/thinks/visualdesignexplorations/
19.http://www.ew.com/
20.http://danielmall.com/articles/responsive-mobile-entertainment-weekly/
21.https://vimeo.com/36579366
22.https://twitter.com/jkosoy
23.http://blogs.adobe.com/jkost/2014/10/the-libraries-panel-in-photoshop-cc.html
24.http://bradfrost.com/blog/post/atomic-web-design/
25.http://patternlab.io/
26.http://smashed.by/beat-it

[image: Chapter Illustration]

Responsive Process
By Ben CallahanLet’s Start At The Beginning
“The successful respondent to this RFP will provide three static design options for our team to evaluate.”

I’ve never been a huge fan of taking a multi-option design approach, but I get it — sometimes a client needs this.
“Each of these options will provide design for three unique layouts: home page, listing page, detail page.”

All right. Now, we’re up to nine static design files. This is getting a bit out of hand.
“Each of these unique page designs should take mobile, tablet, and desktop sizes into account.”

I was never great at math, but I can do this calculation. Twenty-seven static design files!? Not gonna happen.
This is a real-life RFP I received not too long ago. Turns out, the client was very amenable to a more efficient approach. But this experience really got me thinking… The hardest thing about doing this stuff isn’t actually doing this stuff. It’s working with people while you do this stuff.
You see, almost every potential client out there already has a website. For us, that means most clients are coming to this with a set of expectations, along with their own baggage from past web projects. That baggage can have a drastic impact on how your client approaches the project — and you. To help diminish the negative effects of these expectations, I’ve found the best way to manage them is to be the one who sets them.
It’s my aim in this chapter to help you be more successful with your web projects by starting at the beginning; by working from day one to help set your client’s expectations about what’s going to happen, and by working throughout a project’s life cycle to do the same.
Key Differences in Process for RWD
Before you open your favorite text editor, before you open Macaw1, before you get your sketch pad out or start sculpting with text2, you need to help your customer understand the process. There are many ways to do this, and my least favorite is to just try to sell them on a new process. In my experience, demonstrating value in your way of thinking early — even before a contract is signed — is the best approach. This gives your client the confidence that you know what you’re talking about, but it also means you need to earn their trust to try a new way.
To encourage this, there are four ideals my team and I try to keep in mind as we interact with each other: collaborate, iterate, adapt, and prioritize. Let me briefly explain why these specific ideas will keep you on the straight and narrow.
Collaborate
I know, I know. Everyone everywhere is talking about collaboration and how it’s needed to do great work. Well, you know what? It’s true. Of course, you need to collaborate within your team, but there’s another kind of collaboration that’s needed these days — collaborating with your client. I have an important reminder for you: clients are people, too. They may not have your expertise when it comes to web design and development, but they know a lot more about their business than you ever will.
Again, it starts at the beginning. At Sparkbox, I’ve been looking for a way to be more collaborative in bringing new clients on board. As part of this, we’ve been taking a new approach to writing estimates. Instead of a customer coming to us and explaining their project so that we can disappear for a week and come back with The Perfect Solution™, we’ve been inviting them to help us with the estimate. It’s super easy — we call it collaborative estimation and clients love it.
We start with a basic Google Spreadsheet3 that has a few adjustable fields and calculates what we think it will cost to do the work. We begin with wide ranges because we do this very early in the process — typically after just a 30-minute phone call. Then we share it with the client, and we work on it together.
[image: An example of a collaborative estimate, created in Google Drive and shared with a potential customer.]
An example of a collaborative estimate, created in Google Drive and shared with a potential customer.
Here’s why this is important: we collaborate on the very first thing we do with our clients. We want them to know that we add more value when we work with them rather than for them. This is just one way we put our money where our mouth is.
We also invite our clients into our team communication channels with us. We’re big fans of Slack4 and Basecamp5. These tools provide a great mix of formal documentation and informal conversation, both of which are needed to facilitate quality collaboration.
In Daniel Mall’s open redesign of the Reading Is Fundamental website6, we all got a glimpse of how Dan brings his customers into the project with him. Brad Frost took it a step further with a GitHub project called “Project Hub”7 which is a tool for keeping track of the progress of your project.
[image: SuperFriendly’s “Reading Is Fundamental” and Brad Frost’s “Greater Pittsburgh Community Food Bank“ project hubs.]
SuperFriendly’s “Reading Is Fundamental” and Brad Frost’s “Greater Pittsburgh Community Food Bank” project hubs.
Remember, these are all just tools. Tools can help, but what’s really needed is a change in how we think. My friend Kevin Sharon8 said something very poignant to me once. He said, “If you can’t say ‘No,’ it’s not collaboration.” I don’t know about you, but I’ve had many relationships with clients in which I didn’t have the authority to push back — even if I knew from experience what they were asking for would not work. These clients come to you with solutions rather than problems that need to be solved.
I’m ashamed to admit it, but I have also had client relationships where the opposite was true. Sometimes my frustration gets the better of me, and I forget that I need my client to be a part of the project. When we hear an idea from our customers and immediately disagree, we’re just as guilty as they at denying a collaborative process. Many web studios are not willing to allow this kind of collaboration in their process, often because they don’t believe their clients are creative or technical enough to contribute in a meaningful way.
Collaboration is a two-way street. Shifting your view of your customers toward them becoming true contributors in your work will result in all kinds of new ways to include them and help you create a better product.
Iterate
We regularly look for opportunities to deliver a small, high-quality subset of functionality at tremendous speed. Taking an approach like this demonstrates progress early and provides real opportunities to let what you’ve learned create momentum to carry you through a project.
If you sense that there might be political challenges in shifting how your client works, here’s a pro tip (and I sense this in every project we do): working iteratively can help turn skeptics into advocates. Most folks are much more likely to let you try a new way of working on a small phase than on an entire project. Again, the major point here is to demonstrate your value early to earn the trust of your customer.
One way iteration manifests itself is in prototyping. We are constantly looking for opportunities to identify a significant challenge, suggest a possible solution, prove or disprove its validity through prototyping, revise and repeat.
Often we look for the chance to start with a paid discovery9 phase before beginning a large project; think of it as dating before you get married. This gives you an opportunity to learn much more about the project and what it’s like to work with this client. Both parties are able to determine if the working relationship is a good fit.
Initial engagements can take many forms, but the primary objectives are to:
•Better understand the scope of the project
•Identify and prove possible solutions to the biggest challenges
•Figure out if the client/vendor fit is right
•Prove you are capable
•Get paid for the above
Your clients will appreciate this approach and you’ll be building a great foundation for future work. And if you learn something that dramatically changes your understanding of the project, you’ll only be committed to a small phase. This learning will greatly inform the next step in the process and push you toward a better solution.
We have a customer we’ve worked with for many years; in fact, we recently started our thirtieth project with them. To me, this is a sign that we’ve found a mutually beneficial way to work together — they see the value in what we offer, and we are creatively and technically satisfied in our work with them. In trying to pinpoint what has made this relationship successful, I keep coming back to our iterative approach. There have been many times when they’ve come to us with a problem and an idea for how to solve it. Instead of just biting off what may be a 12-week project, we’ve regularly suggested smaller, iterative phases that test out possible solutions and have a much lower initial investment. Taking this approach has allowed us to earn their trust. That trust is indispensable in creating a sustainable relationship, and iteration is at the core of it all.
Adapt
When responsive web design hit the scene, I can remember being struck by the idea that the flexibility inherent in the product we were building was working its way into our process. Samantha Warren10 said it best: “Your process should be as responsive as the products you are designing.11”
The truth is, there is no perfect process for this kind of work. You and I need to embrace the constraints we’re presented with. Every project, client, scope, timeline, budget, team, tech stack, support matrix is different. The organizations that are successful in this business are the ones that can work within the constraints of a project and still do timeless work.
My views on process are decidedly difficult to explain to a customer. Given the opportunity, I’d probably lock a few key people (client included) involved with the project in a room for a few weeks and give them the mandate to figure it out. Take it from me, clients don’t like to be locked in a room for weeks at a time.
Instead, we have to find a balance between a very rigid process (where each step is laid out and documented) and an improvisational one (where we trust the team to find the best approach as they go). There are many factors to consider in finding this balance. Here are three to start with: the size of the team; the experience of the team; and the criticality of the project.
The Size of the Team
It’s much easier to allow for great flexibility in process when you have a very small team. Two or three people sitting in the same room will be able to keep track of what’s happening without a lot of structure. Take the team size up to six or seven and it starts to get difficult to make sense of the impact of each player on the progress of the whole project. Increase your team to ten, fifteen, or more and it gets almost impossible.
This is very personal for me. When I first started Sparkbox with my partners, there were only four of us. We each had a fairly well-defined role, and we were able to operate fairly effectively without much process. Because we all sat in one big room together, there was constant communication about all aspects of our business.
Now, we have 23 full-time people, plus three apprentices. We certainly haven’t grown as fast as some places — we are very deliberate with our growth — but the phrase “growing pains” still rings true. We’ve had to experiment constantly with when, what and how to communicate. It’s only through this experimentation that we can find a balance that’s right for us.
The lesson here is that the size of your team affects the kind of process you can employ for a given project. Generally, the more people you have on a project, the more rigidity you’ll need. As your team size goes down, you can get away with a less formal process. It’s the responsibility of your project manager to monitor the pulse of the team and adjust the process to keep things moving smoothly.
The Experience of the Team
When you are working with an inexperienced team, a more rigorous process will help keep everyone on the same page. In fact, I believe an inexperienced team needs a concrete process as context for gaining experience. Only after demonstrating success in a more rigid environment can you start to peel back the layers of process allowing a team more freedom in how it works.
This, again, is a fairly personal concept for me, mostly because of how we organize teams for a project. We put together a unique team for each project we take; even during the course of a project, it’s possible we’ll rotate people in and out of the team. This can create challenges, especially if the experience of those individuals is vastly different. Mostly, it’s meant that we need to be conscious of the fact that different people need differing levels of process to be successful. Our project managers monitor this closely and adjust as needed.
We have a lot of experienced designers and developers, so this balance is mostly about spreading out the less experienced folks. Adding one or two newer developers to a highly skilled team will raise the bar for everyone. The new devs will learn from the more experienced, and the more experienced will learn by teaching the new devs. This makes for a win–win!
The Criticality of the Project
The idea of how critical the project is comes from a gentleman named Alistair Cockburn, one of the original signatories of the Agile Manifesto12. In his writings on “Crystal Methods,”13 Cockburn describes the range of criticality by completing this statement.
Defects cause a loss of:
•Comfort (not critical)
•Discretionary money (somewhat critical)
•Essential money (critical)
•Life (very critical)
[image: Alistair Cockburn’s Crystal Light Methods Chart]
Alistair Cockburn’s Crystal Light Methods Chart
The more critical our product is, the more rigid our process should be. You might have experienced this if you’ve worked for both small and large businesses. Small, local companies tend to allow you more freedom in how you work because they have less at stake (lower criticality); large companies have much more to lose (higher criticality) if your process doesn’t produce good results.
When I was just getting started in this industry, I worked almost exclusively with small, local businesses. I managed projects with sticky notes, email and a phone call every other week. Now, I’m involved with much larger organizations. Managing these projects requires us to participate in daily stand-ups, retrospectives, and sprint planning meetings. We find ourselves building burn-ups, working in JIRA (issue tracking software), and calculating our velocity more than I care to admit. All of this is because of the criticality of the work — a small percentage of a big enough number is still a huge number. These larger companies understand this, and they have process in place to protect them from those formidable losses.
Prioritize
As the size of the screens we design for decreases, so do our options for communicating priority. Think about it: we typically use things like size, position, order and contrast to help users understand where they should focus. On a small screen, there’s only so much you can do with the size of an object or the position of a headline. We simply don’t have the same liberties as we have when our focus is on larger-screen experiences.
For this reason, it’s critical to understand the priority of content and functionality throughout a system. Luke Wroblewski14 brilliantly encouraged us to think about mobile devices first15 to help our clients home in on what is truly important. The truth is, without a solid understanding of priority, responsive web design is just guesswork.
We’ve encouraged this in our customers by making them think linearly very early in the process. (In the “Getting It Done” section below, I’ll share the kinds of tools we use to do this.) Thinking linearly has the benefit of requiring people to pick what’s most important, and it’s this priority that you need agreement on. Establishing this straightaway in your project will lay an accepted foundation to build on, and provide answers to many questions you’ll find yourself asking later in the project.
We recently had a project where our client came to us with widescreen wireframes already put together. They had done this in an effort to save some money, and we were happy to try to work with them in this way. When we started design, the client wasn’t happy with our work. It wasn’t until halfway through the project that we realized the widescreen wireframes didn’t adequately identify the priority of the content and functionality. This was the crux of the issues we were having. We ended up going back to perform some content analysis and prioritization to regain momentum on the project. Had we done that earlier, we could have worked more efficiently throughout the project. Unfortunately, in an effort to help them save money, we had to perform some rework which could have been avoided if we’d just laid the proper foundation first! Lesson learned — establish the priority early.
Four Ideals
As you jump into your next project, keep in mind that you need to include your client in the project. Look for opportunities to collaborate with them instead of just working for them. Remember that the more you demonstrate value early, the more trust you’ll earn. Iteration helps you do this — don’t be afraid to start small! Also, remember that you will most certainly have to adapt your way of working to better suit what a specific project or client may need. Finally, push hard to establish a priority of content and functionality early in the project. This will pay dividends later in the project when questions arise about the importance of certain kinds of content.
Beyond these four ideals, I’d like to provide a bit of a framework for you as you consider what kind of process will work in your day-to-day.
A Framework For Considering Process
Our Process is Always Fighting for its Life
One thing that amazes me about most presentations or writing on process is how confident the folks sharing seem to be. Maybe we’re the outlier, but our process is always fighting for its life. If a new way of working comes along, we’ll try it. If we think there’s even a hint of a better way to do something, we’re going to dig around trying to uncover it. This is just how we’re wired. I get the sense that a lot of you are wired this way, too.
Let’s agree that our process is never complete.
Shift Away from Linear Hand-offs
Most in the industry agree that we have to stop throwing deliverables over the wall. Instead, many are thinking about how to reorganize their teams in hopes that having the right people involved for the duration of the project will increase teammate empathy and raise the bar for everyone. Trent Walton describes this eloquently in his post called “Reorganization16.” In it, he relates that the structure of your team often constrains the kind of process you can use and encourages us to consider smaller cross-discipline teams. We’ve seen this to be true and take a very similar approach. Truthfully, our past linear processes have probably always been a bit inefficient. I believe responsive web design has only made that inefficiency much more obvious17; tackling responsive work has led me to conversations with our clients around their organizational structure — more evidence that RWD really is a catalyst for organizational change.
We need to involve more disciplines for more of the project. I like to think about this as spiraling through a project18 with our eyes firmly focused on the end product, on the one deliverable. With each spiral through, we involve all disciplines, and we gain more clarity at all decision points. The concept is simple: allow the entire team to play a role throughout the duration of a project. In other words, recognize and embrace the impact that making changes in one area of a project has on the others.
My team and I landed on this idea (spiraling through a project) because of our interactions with a business mentor of mine. His name is Geoff, and he’s a very sharp guy. He’s been the CFO of some pretty large organizations and has made a career out of helping visionary leaders get a grasp on their company’s financials.
When we first met with Geoff, we were in crisis mode. We had a major challenge before us, one that neither my partners nor I knew how to address. Geoff sat us all down and asked us to “begin with the end in mind.” He wanted us to explain what it would look like after we made it through the difficult times ahead. He wanted us to define success for this time in our company’s life. As we continued to meet with Geoff, I started to get frustrated. Each time we sat down, I hoped he would give us the advice we needed to start to solve the problem we were facing. Instead, he continually asked more and more questions. This went on for several weeks, and it was a difficult time for me.
I will never forget the meeting I had with Geoff and my partners where it all started to make sense. Our meeting began like all the others; we went through our current understanding of the problem before us and took some time sharing any new insight we had gained. Only this time, each of us started to see the solution emerging. It wasn’t perfectly clear, but it began to come into focus. Of the three options we were considering, one began to look much more appealing than the others. What we’d learned over the past months unmistakably led us to the best option to address the problem we were facing.
This lesson has been invaluable for me. What it taught me is that a linear process requires us to make decisions before we have all the information. How could we possibly know everything we need to know to create a set of wireframes without considering the visual design? How could we perfect the interface design without experimenting with some front-end code? When we act like it’s possible to start with the content, then do some user experience design, then do some user interface design, and so on, we ignore the impact that each of these deliverables has on the others. Instead, we need to allow them to inform each other. We need to give them room to breathe, to adjust, and to use what was learned from the project to carry them forward.
This is precisely the “spiraling” process that Geoff was pushing us through. Those weeks of asking questions were informing our understanding of the problem. Instead of making a decision (approving a UI design) and moving on as if it would never change (OK, front-end dev, go code this design), Geoff forced us to recognize that we didn’t have all the information we needed to make the best decision. Geoff wanted us to wait until the “last responsible moment” to decide.
I’ve tried to translate this idea of spiraling to what we do every day, and I’ve landed on a visualization like this:
[image: A “One Deliverable” workflow, where the focus remains on the end-product.]
A “One Deliverable” workflow, where the focus remains on the end-product.
Please put your own disciplines into the slices of pie above — the image is simplified to illustrate the approach. It’s important to note that those dots are not deliverables in the traditional sense. They represent opportunities for you to sit down with your client and review your progress toward the “one deliverable.” This means: stop refining deliverables for fear of disappointing your client. It’s terribly inefficient to make your wireframes look beautiful in Illustrator when a sketch on a whiteboard will do. We’ve even stopped calling them deliverables and started calling them updates.
This kind of workflow is flexible enough to use on any kind of project because you can simply swap out the types of disciplines that are needed for the project. The ceremony around the process can be made more rigid or more improvisational depending on the experience of the people involved. The key is to make sure all of the people are involved.
This approach delays decisions until you have the right information. It recognizes that decisions made by one discipline will undoubtedly affect the others. It opens the conversation to the team and requires buy-in from all involved. It’s less formal but more efficient. It’s less predictable, but I believe it has the potential to deliver a much better product.
Let’s agree that we need to seek out multidisciplinary contribution.
Efficiency is Key
If we had all the time in the world, we wouldn’t have to worry about our process — we could just try stuff until we stumbled on a great idea. You and I both know this isn’t the case.
A lot of the adjustments we make to our process at Sparkbox are because we’re looking for a faster way to accomplish something. The promise of increased speed is also how we earn opportunities to work with some very talented internal teams at bigger customers. Everyone is looking for efficiency gains.
Let’s agree that a good process is also an efficient process.
Ever-Evolving. Multidisciplinary. Efficient. As we jump into the nuts and bolts of this stuff, I want us to keep these three things in mind. We can use these ideas as a filter through which we consider new approaches.
Enough Theory
That’s enough theory. Let’s get into the nuts and bolts of this work. I find myself constantly asking three questions throughout our web projects:
1. Who are we building for?
2. What do we want them to gain from the experience?
3. How should we present the experience?
The goal is to find a way to say the right things (what) in the right way (how) to the right people (who). The secret to great communication of any kind is answering these questions. You will, of course, ask many other questions throughout your project. Questions like what kind of navigation patterns should I use on this site, or do we really need an ad at the top of every page? I’m suggesting that having the answers to who, what and how will lead you in the right direction as you answer all the other questions that come up.
The chapter by Eileen Webb is all about content strategy for your responsive project. It’s a thorough chapter, and she answers the questions around what it is we’re trying to communicate better than I ever could.
So, the rest of this chapter is dedicated to answering that third question, “How?” I’ll share with you the kinds of tools that have been the most helpful for me and my team at Sparkbox and trust that they will also help you!
Getting It Done
As I mentioned earlier, understanding the priority of the content and functionality we’re presenting is critical to communicating effectively. Here are a few ways this truth manifests itself in the work we do.
Content Priority Guide
A content priority guide is “part content modeling, part stripped-down wireframe” (see “Content Priority Guide19” by Emily Gray20.); like a mini content model, in priority order, and with client collaboration. (See http://bit.ly/content-priority-guide21 for a working example of a content priority guide.)
[image: A screenshot of a content priority guide created in Google Documents and shared with a client.]
A screenshot of a content priority guide created in Google Documents and shared with a client.
The content priority guide tells you what types of content should exist on each page. These could be simple things like the title, primary image and body copy on a blog post, or they could be much more complex: consider all the content types you might need on the product detail page of an e-commerce site.
It also allows for explanation of each content type. If you have a short description of a product, the priority guide may say, “One sentence describing the product and what makes it unique.” For an item like a hero image, you could provide some details about the art direction of the photo if that was relevant for a specific case.
Content priority guides also help you quickly identify reusable components. This is very helpful as you plan out the management of that content — recognizing reusable patterns means you can build a more efficient system to manage the content.
Most importantly, a priority guide is in priority order. It provokes a discussion about what’s truly important on any specific page. This helps tremendously as you consider how a site will respond across viewport widths. And because it doesn’t contain actual content it facilitates great conversation about the what and why of types of content, which can easily be overlooked if you start writing the copy immediately.
If your clients have difficulty prioritizing (and they probably will), you could place these decisions around what is most important into a spreadsheet and give them options to check — primary, secondary, tertiary, etc. The result is the same: you have a prioritized list of content types for each page, but the process to get there may feel a bit more friendly to the client if they’re given some options.
Information Architecture
Once you have a good understanding of the types and priority of content that needs to exist in the system, it’s critical to consider how that content should be grouped and the paths through the content you want your users to take. This kind of thinking is crucial to the creation of a usable site.
I recently saw Aaron Quinn22 speak about information architecture and he said something that really stuck with me. He suggested that we might be relying too much on our common sense when it comes to grouping information. Instead, he made the case for us to consider consensus over common sense23 when planning how our users will interact with what we build. Let me explain why with a quick story.
We have a client we’ve been working with for over a year now. She has bootstrapped a very successful SAAS product which we helped her build. This woman is incredibly smart; she works on the web every day — it’s how she makes a living. Not too long ago, I was having a conversation with her about what was next for her product and she said this to me: “I think we need to make some changes to the tabs on our site.” I paused because I was desperately trying to remember where we had implemented tabs on her site. Sensing my confusion, she went on to explain more about what she was hoping for. After a few moments, I realized she was talking about the navigation. It was eye-opening that this savvy web entrepreneur referred to her navigation as “tabs.”
I tell you this because I want you to remember how much of a bubble we live in when we allow our instinct to drive the decisions we make. What may seem like common sense to you and me is likely a very different way of thinking about the web than pretty much all of our users. This is what Aaron Quinn was describing. We cannot rely on our instincts; we need to work with our users to find out how they think about the kinds of content we present to them. It’s very difficult to remember this, but it makes a world of difference.
Now, back to planning the information architecture of a site given this context. Instead of grouping content that seems related to you using common sense, Aaron is suggesting we rely on the consensus of users. Information architecture is a very deep field. I can’t pretend to cover the intricacies of this specialty in one section of one chapter. It’s important you understand that it’s impossible to do this kind of work well on an island. You must involve your client and the users of the site. Only then can you know if your intuition is correct.
Remove the Navigation
During some recent usability tests, I noticed that on small screens many users never attempted to locate or use navigation. These days, most of our small-screen navigation experiences are hidden behind obscure icons (hamburger, anyone?). I believe our expectation that users will properly identify, trigger and use our navigation is unfounded.
In an effort to combat this, we’ve begun considering a simple question — can someone use this site without the navigation?
Literally, remove the navigation from your site and see if your users can reach the content they want. In other words, plan out the content in such a way that your users can feel their way through the experience. Chances are, a good number of them will browse this way. We’d better be ready for them.
Style Comparisons
I learned about style comparisons when I had the opportunity to present with Dan Mall24 and Yesenia Perez-Cruz25 at Artifact Conference26 in Austin, Texas. Dan shared a story about how he was working to build a new office. Here’s the relevant excerpt from his blog post27:
“I could create an illustration or a 3D rendering of what I want my new office to look like, but that doesn’t take advantage of his [the contractor’s] great ideas. It’s dictation, not collaboration. Instead, I show him a Pinterest board my wife and I created. I tell him that I love these beams or this mix of materials, and we can have a conversation. I revise my ideas through his expertise, and vice versa. This is how building a website should go.”

Not only is this a brilliant approach to building a new space, it can be applied directly to what we do each day. Our creative director, Jeremy Loyd28, has been creating super-simple PDFs for our clients that ask them whether they think their brand would best be represented online with:
•A dark or a light site
•A flat or a textured site
•An illustrated or photographic site
•Whatever other style comparisons are relevant
[image: A style comparison allows the customer to share some of their vision for their new design. In this case, we’re asking if they prefer “organic” or “graphic.”]
A style comparison allows the customer to share some of their vision for their new design. In this case, we’re asking if they prefer “organic” or “graphic.”
You get the idea. The point is that it only takes a few minutes to put this together, because it doesn’t really require any design. You can use screenshots of existing sites that embody the qualities you have questions about.
An approach like this is very useful when there isn’t much clarity about the design direction up front. It helps us make sure we’re in agreement about the direction we’re headed. Truthfully, this is really just a simple tool to facilitate a conversation, to get people thinking and conversing about design.
One other trick from my friend Dan Mall which you can use to really drive this home is to quickly edit your client’s logo into a screen capture of someone else’s site. There is something about seeing their brand associated with a specific style which provokes a reaction. This makes for very fruitful conversations.
User Experience Design
No title in our industry is more overloaded and misunderstood than “user experience designer.” It means so many different things to so many different people. Recently, I’ve even noticed a trend toward expecting all designers and developers to do this work. And while I believe the best organizations have teams full of people who care about user experience, I also believe it has a deeper role to play.
I think about user experience as the glue that binds our design and our development together. It’s what separates web design from other kinds of design — that our work is intended not only to be observed, but also to be interacted with. That interaction is so important. In my mind, a great user experience designer has an instinct for what will be easy for a user to understand. However, this must be balanced with the idea that design without testing is guesswork. For this reason, a great user experience designer knows how to research their users, how to collaborate with UI designers, how to prototype possible solutions, and how to select and execute usability studies to capture and analyze data which properly informs design and development.
That’s a lot. And since I’m not formally trained in user experience or human factors, I’m probably not qualified to write about each of those things. Instead, I want to focus on one lesson I’ve learned (see “Test the Aggregate”) and then share the kinds of updates we do with our customers to help us all agree on usability decisions across screen sizes and input methods.
Test the Aggregate
I work with internal user experience teams at larger clients, and one challenge I’m continually presented with is the desire to test the experience they are building at individual breakpoints. In other words, I’ve seen teams create three (or more) separate prototypes — for mobile, tablet and desktop — and then proceed to test each one independently. When this happens, each of these separate experiences will evolve on its own, usually resulting in three unique experiences which will be very difficult (if not impossible) to build in a responsive way.
To combat this, lately I’ve shared how critical it is to test the aggregate experience. Instead of building three separate prototypes for usability studies, build a single prototype with HTML and CSS that actually responds. We usually do this statically with an evolving set of front-end build tools (you can learn more about our front-end stack in the article “We Heart Good Tools: An Update on Our Build Process29”) which means we can work quickly with fake data.
This concept is about letting go of the control you think you have. It’s about making decisions which benefit the whole (the aggregate) even though they may require compromises in certain contexts. It recognizes that changes made at one of the breakpoints in your system will inevitably affect the experience at other breakpoints. It’s about embracing the benefits you get with a single code line and adjusting our usability studies to account for this.
If we’re building responsively, we need to focus on testing a single-site solution across viewport widths. We need to measure the usability of the whole, not just the breakpoints. This will help us create the most usable experience for the most people.
And now, a few updates we use with our clients to help accomplish these goals.
Content Prototype
You’ve heard it said that a web designer should learn some CSS, right? Well, I agree, and I think a content strategist should learn some HTML. For this reason, and many others, we’ve been building content prototypes pretty early in our web dev process. As soon as we start to get a clear picture of actual content, we start marking up that content with hypertext. This is what we do with HTML, right? Who better to wrap content in semantic tags than the folks who best understand the content? While tools like Markdown can work as well, I think it best to learn some basic HTML before you jump straight to Markdown. Understanding why you’re writing the content in this way is just as important as actually writing the HTML. Tools like Markdown add a layer of abstraction between your actions and the output of those actions — an abstraction that is fine, once you understand what it gives you.
When we create a content prototype, we intentionally leave out almost all styles. We leave them quite ugly, so it’s very clear we have not designed anything. This keeps the conversation focused on the content and the priority of that content. Know that when you show this to a customer, they will immediately home in on the order of things — which is precisely what you want them to do: get that priority right! Also, we usually include just enough CSS to show groupings, like so:
[image: An example content prototype from the recent redesign of the Sparkbox website.]
An example content prototype from the recent redesign of the Sparkbox website. You can see this as a working example at building.seesparkbox.com30.
I told you it was ugly.
We also flood our content prototypes with links. One reason we create these is to allow people to navigate from page to page, to see if the flow through the content works.
Remember, you have to prepare your clients for seeing this kind of ugly update. Otherwise, they will certainly have second thoughts about involving you in their project. However, there’s something powerful about seeing raw content marked up in a browser.
One important note: we recognize that purely semantic markup is probably not what will go to production. While this would be ideal, the reality of work on the web today is that it needs to be maintainable and extendable by individuals and teams with wildly varying skill sets. However, starting with this pure version of the markup is a fantastic way of reminding us of our ideals. Then, as we adjust the markup to allow for styling, reusability, extendability and so on, we’re very aware that every change we make moves us away from the ideal. Every change is a compromise and should be deeply considered as such before it’s made.
Static Wireframes
The past few years have seen quite a bit of distaste for more traditional static wireframes. I believe they can still add a lot of value. I also believe they may not be needed on every project. When we use them, we typically do them at narrow widths31 — as inconvenient as this is — to help us focus on priority. Limiting our visual real estate forces this focus. We’ve used a lot of tools to do this, everything from Keynote to Balsamiq32. Honestly, any of these tools will do the job. Find one you’re comfortable with and get to work.
We also do a lot of sketching. Whiteboards, pencil and paper, various sketching apps. We take pictures of this stuff and share it with our clients, intentionally keeping it all very raw. The rawness is an important part of what we do. It helps our customers know we’re not wasting time polishing documents that won’t benefit from polish, and it keeps the feedback focused. The last thing we want is someone commenting on the colors of our wireframes.
Interactive Wireframes
Part of the push away from more traditional wireframes has been in favor of a more interactive approach. Like the Agile Manifesto33 promotes working software over documentation, many in our industry believe that demonstrating your intention for an interaction via a prototype is much more powerful than trying to describe it statically. These days, the tools available for rapid prototyping are tremendously capable: frameworks like Bootstrap34 and Foundation35; CSS (or Sass36 and LESS37) toolkits like Bourbon38 and Pure CSS39; visual prototyping tools like InVision40 and Marvel41. Even visual web design and development tools like Macaw42 or presentation tools like Keynote43 can be used to create very interactive wireframes.
The benefit of this approach is that you can show people the idea instead of trying to explain it to them. If a picture is worth a thousand words, a prototype is worth a thousand pictures.
We’re working with an organization now that understands this. One of their goals is to bring rapid prototyping earlier into their process so they can use the prototypes for usability studies, as well as production code. Our work with them is focused on creating a system of components which can be used across all of their web properties. This system will also eventually be used to allow their team to build interactive wireframes very quickly. Because we will have built it with their brands in mind, the interactive wireframes will look very much like their production releases, which will be tremendously helpful in their UX testing.
This kind of approach focuses on the long-term success of a web property. It embodies the “one deliverable” workflow we talked about earlier by involving all disciplines in the creation of the prototype, and allowing what is learned during its design and development to inform further decisions. I believe we’re seeing a shift toward organizations building mature front-end systems instead of hacking together CSS as an afterthought. Giving an organization the ability to test a static version of their web work with real users is a major step toward cementing this as a norm in the near future.
UI Design and Development
“Good design is problem solving.” (Jeffrey Veen)44

For those of you who are designers, this quote rings very true. Many folks see what we do as decoration, but it’s so much more. Over the past few years, I’ve found myself wholeheartedly agreeing with the sentiment of Jeff’s statement, but also intensely aware of designers’ tendency to overrefine their solutions. This leads me to what I call “the switching point.”
[image: A designer needs to be able to identify when they shift from solving problems to refining solutions. This is the last responsible moment to shift into the medium of delivery: HTML, CSS, and JavaScript.]
A designer needs to be able to identify when they shift from solving problems to refining solutions. This is the last responsible moment to shift into the medium of delivery: HTML, CSS, and JavaScript.
If you break the activity of design into three phases — establishing the aesthetic, solving the problem, and refining the solution (as indicated above) — the shift from problem-solving to solution refinement is the switching point. This is the last responsible moment to move into the medium of the web. If you don’t do this, you’ll end up performing that refinement phase multiple times — and that is highly inefficient.
If you’ve ever spent hours tweaking a PSD, handed it over to a dev to build, and then checked back in a week or two, you have experienced this pain. All the effort you took to refine and refine by pushing static pixels around is wasted. As soon as the design changes media (from static design in Photoshop or some other tool to HTML and CSS in the browser) another pass of refinement is needed. The idea behind the switching point is to recognize how inefficient this is. Instead of refining with static tools, get the basic design coded as soon as possible and handle the refinement in the end medium — the web.
This often requires design pairing, literally sitting together to make those refinements come to life. Though this can feel slow and painful at times, it is actually tremendously beneficial to all involved. As a designer shares with a front-end dev the kinds of style adjustments they would like to see, the front-end dev learns what is important in a refined design. While the front-end dev makes the requested changes, the designer sees how those changes are made, perhaps learning a little CSS. This process makes everyone smarter. It also means that the next time these two pair, it will go much faster.
These days, we have to be comfortable with a number of tools to get UI conversations started and we need to shift the coding of those designs earlier in the process. Let’s take a look at a few ways to do this.
Style Tiles
Samantha Warren broke new ground when she introduced style tiles45 as a way to “define a visual language” for the web. Those of us with branding backgrounds immediately saw how valuable style tiles could be.
Style tiles are quite simple. They generally include color palettes, typography choices, textures, and iconography or illustration styles. They are deliberately not a full-page comp. Instead, they represent just enough design to determine if we’re moving in the right direction. For this reason, they work best when your client has expressed what they want, but you aren’t fully convinced you’re on the same page.
I’ve come to appreciate style tiles, mostly because of their speed. Where we used to spend a week designing a homepage and subpage in Photoshop, we can now create a simple style tile in a matter of hours. This can save time and money, and give you confidence that you’re moving in the right direction.
Samantha has a handful of examples on the style tiles site, and there are a few great resources listed below which cover their use in real-world process:
•“Get Your (Visual) Style On46”: Yesenia Perez-Cruz, Dan Mall and my presentation at Artifact Conference in Austin, Texas (May 13, 2013).
•“Faster Design Decisions with Style Tiles47”: Samantha Warren at An Event Apart in Austin, Texas (February 2015).
•The Style Guide Podcast with Samantha Warren48
Because of their static nature, we don’t use them too often. Our initial design direction is typically established with an element collage or a style prototype, both covered next.
Element Collages
Dan Mall introduced us to element collages49 as “an assembly of disparate pieces without specific logic or order.” Their variegated nature makes it obvious that what you’re looking at is not a finalized design; rather, element collages provide clients with the context of a variety of components that might live in a system together. They help us put some flesh on the bones of a wireframe; they help us picture the direction we’re moving in; they allow us to begin visualizing the building blocks of our site but encourage us not to lose sight of the whole.
One benefit of element collages is that you can choose which components to show. Does your client really care about how search is presented to their users? Great! Maybe you should spend some time addressing that concern — put it in the element collage. Is your client obsessive over the call to action buttons? Put them in the element collage. This pick-and-choose mentality makes it easy to tailor each collage with what’s most important in your project. Your clients will appreciate this tremendously.
On a recent project, we needed to establish the design direction for a redesign of one of our client’s web properties. Katie Kovalcin50 (one of our designers) was leading the design effort of our team, and she opted to create two element collages instead of doing homepage comps.
[image: The first design direction concept we presented to our customer: “trusted and sophisticated.”]
The first design direction concept we presented to our customer: “trusted and sophisticated.”
[image: The second design direction concept we presented to our customer: “warm and welcoming.”]
The second design direction concept we presented to our customer: “warm and welcoming.”
The total time we invested in creating these two design concepts was around 16 hours. When I asked Katie how long this would have taken had she been asked to do two homepage comps, she responded:
“In this step, trying to figure out their new aesthetic, it would be hard to juggle finding that aesthetic while trying to lay out the hierarchy of the page and figure out the interactions, too. So, to lay out the whole homepage as a way to figure out the aesthetic could sometimes take up to a week, depending on how much we had to work from. I’d say probably close to 25–30 hours each.
But going off of the element collage, it was pretty easy to move forward with the page layout and all of that other stuff because there’s not a lot of scrambling to figure out what button styles we’re going to use, or fonts, or colors.”

That means, by using an element collage, we quartered the amount of time we put into establishing an aesthetic.
There’s one other really interesting expression in Katie’s quote above; she said “it would be hard to juggle finding that aesthetic while trying to lay out the hierarchy of the page and figure out the interactions, too.” In other words, starting with a homepage comp is trying to accomplish too much, too soon. When we take a smaller step first (by using element collages or style tiles), we’re able to divide and conquer the design challenges before us. This brings our clients into the conversation more frequently and allows us to learn as we go, all resulting in better work.
Style Prototypes
You can think of style prototypes as interactive style tiles. The same types of things you might include in a style tile — brand mark, headlines, paragraph styles, button styles, link treatment, color recommendations — are included with a style prototype. The only difference is that we take it one step further and code it.
The beauty of these is that we can show real web type, real colors, real hover states, illustration style with web vectors, and how type and basic layout might respond. We ask our clients to review them in their browser of choice. This opens up conversations about what it means to support a browser. For example, if they use a browser that doesn’t support border-radius, they won’t see rounded corners.
We can also build style prototypes in around a day, which gives us the same efficiency benefits a style tile gives us. Clients love them because they can interact with them. They can see them on their phones and tablets. They can start to play with them.
Finally, in a world where most of us believe web designers should learn to code, style prototypes are a fantastic introduction to writing HTML and CSS. Because of their simplicity, even a non-coding designer can figure out how to build them. Before they know it, they’ll have the confidence to refine production CSS, instead of statically mocking up the changes they want to see.
When we designed the original Sparkbox site, and when we recently redesigned, we used style prototypes to establish a design direction.
[image: Style Prototype for the first Sparkbox site.]
Style Prototype for the first Sparkbox site. See it in the browser at http://sparkbox.github.io/style-prototype/51
[image: Style Prototype for the second Sparkbox site.]
Style Prototype for the second Sparkbox site. See it in the browser at http://building.seesparkbox.com/style-prototype/52
Atomic Design
Jeremy Keith53 first introduced me to the idea of starting design with “the atoms of a site” during his Breaking Development54 keynote entitled “There is No Mobile Web55.” Brad Frost56 formalized the term57 back in June 2013 when he outlined a mental model for approaching the design of a “system of components” for the web.
The basic premise is that we should consider five levels of granularity in our work to craft reusable systems of components. The smallest level is called an atom; think of a simple HTML input or a label for an input. These atoms can be combined into molecules; perhaps a search molecule is made up of a button, label, and input. These molecules can be combined to form organisms; maybe the header of a website would contain the search, brand and navigation molecules. These organisms are put together to form templates and pages. Templates are full of generic data; pages are templates which have real data injected into them. All of this theory can help us create more modular, reusable and extendable code.
One thing I’ve learned as we’ve approached our projects along this line of thinking is that atomic design is much easier when you allow it to evolve out of refactoring. A common way for us to work is to build a small component in HTML and CSS without much worry about the atoms, molecules or organisms. Then, once we’ve solved the UX and UI problem with an interface, we can refactor that code into an atomic structure. This reverse approach means we don’t waste time attempting to overthink what should be a molecule versus an organism. Instead, we allow the various levels to evolve as the system itself evolves.
The result of an atomic approach is a library of patterns which can be integrated into a system.
Pattern Libraries
A pattern library is just what it sounds like — a library of the patterns that exist in your system. There are a lot of people working on pattern library solutions these days; folks like Brad Frost58, Anna Debenham59, Jina Bolton60, and Bermon Painter61 have spoken and written about the topic. In fact, Brad and Dave Olson62 have created one of the more well-known tools available today, Pattern Lab63. Pattern Lab is great because it allows you to separate the specific content from the HTML modules, and it provides an atomic framework which makes it easy to build up a system of patterns. They’ve also added in some great features for testing while you’re in development. The whole thing is very easy to get running locally and has a simple interface that can easily be shown to a client. If you’re looking to get into pattern-driven design, this is a fantastic place to start.
A lot is happening in this space right now, and there are many other resources for those of us interested in learning more. Brad has worked with Anna Debenham and Brendan Falkowski64 (along with a few other folks) to create Website Style Guide Resources65. This is a tremendous collection of many of the examples, articles, talks, podcasts and more that cover pattern-driven design and development.
So far, the biggest challenge is finding a way to keep a pattern library up to date after the patterns have been integrated with a back-end system. I haven’t seen the perfect solution for this yet, but there are a lot of bright minds working on it. Check out Rizzo by Lonely Planet66 as a great example of an organization diligently working to solve this very problem. Even if we don’t have a perfect long-term solution, I’ve seen tremendous benefits from designing this way. It keeps you thinking modularly, and this makes the front-end work we do much easier to integrate and maintain.
What about Breakpoints?
Whenever I speak or write about process, I’m always asked about selecting breakpoints. Strangely, this conversation almost never arises in our responsive work from day to day. Certainly, some clients come to us having done a ton of work reviewing analytics and prioritizing devices — all in the name of documenting the system’s breakpoints. This line of thinking has never made much sense to me.
I believe it was Stephen Hay who said it first67: “Start small and add a breakpoint when the site breaks.” Our sites often have dozens of breakpoints — most of them don’t align with common device sizes. When you see that your content and your design are no longer working in harmony, fix it.
Now, there is a difference between what Stephanie Rieger68 calls major breakpoints and minor breakpoints. (I’ve also heard them called breakpoints and tweakpoints.) Let me explain each.
Major Breakpoints
When there are shifts in the layout which require separate modules to work together in their design change, we use a common breakpoint (a major breakpoint). Perhaps you have a layout adjustment which moves a stacked list of products at small viewport widths to a two-column layout at larger viewport widths. In this case, you’ll want to keep track of where this layout shift happens because it’s likely that there are many other changes which need to occur at the same viewport width.
Most of the work we do has between three and six major breakpoints. These are often set as Sass variables in our workflow so that we can make changes to them later in one place. It’s also common for us to have a set of major breakpoints for major sections of a site. For example, we may have three major breakpoints in the header of our site and three completely different major breakpoints in the footer. This keeps our work modular and allows for these sections to evolve independently while still maintaining cohesion with the system as a whole.
Minor Breakpoints
When more subtle changes to type or spacing are needed, we can still use a media query to make these adjustments (a minor breakpoint). These are typically one-off style modifications for things like font size (to keep line length in check) or to increase spacing as the viewport width increases. These minor adjustments demonstrate a deep attention to detail that can really set your work apart.
Instead of using preprocessor variables for these, we typically just use hardcoded numbers. We have, on occasion, also used preprocessor calculations to keep these relative to a major breakpoint. For example, if we have a major breakpoint at 30em called $bp_header-show-nav, I might want to adjust the font size of a heading at 5em over the $bp_header-show-nav breakpoint. In this case, that would happen at 35em. Should we shift that major breakpoint to 32em at some point in the future, the minor change would then happen at 37em. Thinking relatively with minor breakpoints can help if you suspect that the major breakpoints might change. You’ll have to use your judgment on a case-by-case basis to make the best decisions.
Further Reading
For more on breakpoints, check out these articles:
•“There is no Breakpoint69”
•“The In-Between70” by Mark Boulton
•“Pragmatic Responsive Design71” by Stephanie Rieger
Transitioning Out
These days, it’s not enough just to build great sites. We also have to consider the longevity of what we build. While approaches like atomic design can help, we need to do more. At the moment, most of our projects include some kind of training component — and I’m not talking about teaching the client to use the CMS. As organizations begin to truly understand the value the web offers them, they are deciding to build their own teams to own and maintain their web properties. If we want to build something that lasts, we need to make sure the team taking on our work is capable of properly maintaining it. For this reason, we’re doing much more in-depth training around the techniques we use to build for the web.
Fortunately, there are now many common ways to approach the transition. Every repo we create in source control has a useful readme file; we deliver automated tests supporting our code; and we’re working on some ways to transition the performance budget of a project so that our clients continue to maintain the speed of their sites. Along with atomic thinking, we also deliver working examples of subsystems we build. For example, it is common for us to consider how typography works across all web properties in the context of a customer’s brand, so we might also provide detailed documentation on this typographic system, as well as a page of examples showing how to use it. These kinds of additions to our work make for a much easier time as we pass the code from our team to our client’s team.
There are also deeper repercussions to all of this. Understanding who will maintain the system you’re building should also influence the decisions you make around technology choice and development technique. In other words, if your client’s web team is not ready to use Grunt with Assemble and a local server from the command line, you need to find a way to work that better matches their capabilities. Remember, you’re building this for them.
It has also been tremendously beneficial to invite our client’s web design and development teams to participate with us on the project. Using the project as an opportunity to train your client’s team demonstrates incredible value and makes you an easy choice among your competition.
People Over Process
One final thing I’ve learned in constantly evolving our workflow is that the process you choose to use is much less important than the people using it. If you want to build better web products, start by developing your people. This will get you further than any tweak to your process or workflow.
Keeping Your Team Happy
Along these same lines, I’d recommend reading Flow72 by Mihaly Csikszentmihalyi. In this book, he explains the research he has done to better understand individual happiness. He describes what he calls the “flow channel,” charting skill level along the x-axis against challenge level along the y-axis. The flow channel is the area where your skill is met with an adequate challenge. Too much challenge for your skill creates anxiety and too little challenge for your skill results in boredom.
[image: A diagram representing the “flow channel” described by Mihaly Csikszentmihalyi in his book, Flow.]
A diagram representing the “flow channel” described by Mihaly Csikszentmihalyi in his book, Flow.
This can be translated to what we do by considering where we challenge ourselves in our day-to-day work. At Sparkbox, we talk about a culture of learning. That (hopefully) means the skill of my team is continually increasing. It follows, then, that to be happy we need to find continually increasing challenges to match our continually increasing skill. It’s our responsibility to balance this need for innovation with financial responsibility in the budgets our clients have.
This is tricky. For us, it’s meant we needed to stop reinventing the wheel; it’s led us to consider libraries of well-tested interface elements as opposed to repeatedly solving the same problems on every project. It’s meant we need to understand where each of our customers should spend money to innovate. And it has required quite a bit of transparency between those clients and our team so that we’re all on the same page.
In the end, it makes for a more content team — one that loves the work they do because it challenges them in just the right way. And it makes for a more content client — one that respects your recommendations about where and why they should invest. This is excellent for everyone involved.
Onward
This is the part where I deeply inspire you and encourage you to brave a bold new world of web design. But, to be honest, I’ve struggled to summarize a closing sentiment for this chapter.
After some contemplation, I believe this is because writing on process is never really done.
I hope that as you’ve read these words, you’ve found yourself more inspired to invest in your own understanding of how the web works, and more willing to invest in your teammates’ understanding. I hope you’ve felt excited to try a new approach, but I also hope you’ve felt empowered to tear these pages up if they don’t work for you. Only you, your team and your customer can figure out the best way to approach a project. This is the nature of what we do.
The time is now — so, get to it!

About the Author
[image: Ben Callahan]
If there is one question that bothered Ben for quite some, it’s how to combine a collaborative, flexible workflow with the challenges of responsive web design. Ben loves challenges and complex issues, and loves finding elegant responsive solutions to nasty problems. Apart from doing that, occasionally, he also spends quite some time in his backyard splitting wood for next winter.
About the Reviewer
[image: Emily Gray]
Emily Gray oversees content strategy at Sparkbox where she raises the bar in terms of intentionality, attention to detail, and getting things done right. Emily’s passion lies in content, the web, and making the two work together to meet client and user needs. Clients rely on Emily for her organization, structure, expertise in information architecture, and ability to stay calm amid craziness.

—
1.http://macaw.co/
2.Sculpting with text is Stephen Hay’s process of designing and building websites content-out, preparing text-only content first, and filling it out with enhancement and decoration as you build. https://huffduffer.com/adactio/167828
3.http://bit.ly/collab-estimate
4.http://slack.com
5.http://basecamp.com
6.http://rif.superfriend.ly/
7.https://github.com/bradfrost/project-hub
8.https://twitter.com/kevinsharon
9.http://alistapart.com/column/lets-do-it-what-are-we-doing
10.https://twitter.com/samanthatoy
11.https://the-pastry-box-project.net/samantha-warren/2013-december-16
12.http://agilemanifesto.org/
13.http://alistair.cockburn.us/Crystal+light+methods
14.https://twitter.com/lukew
15.http://www.abookapart.com/products/mobile-first
16.http://trentwalton.com/2013/04/10/reorganization/
17.http://www.creativebloq.com/business/what-responsive-web-design-means-team-organisation-11410353
18.https://speakerdeck.com/bencallahan/dissecting-design
19.http://seesparkbox.com/foundry/content_priority_guide
20.https://twitter.com/emilykggray/
21.http://bit.ly/content-priority-guide
22.https://twitter.com/aaronquinn
23.http://www.slideshare.net/aaronquinn/a-make-it-or-break-it-navigation
24.https://twitter.com/danielmall
25.https://twitter.com/yeseniaa
26.http://artifact.com
27.http://danielmall.com/articles/the-post-psd-era/
28.https://twitter.com/jeremyloyd
29.http://seesparkbox.com/foundry/we_heart_good_tools_an_update_on_our_build_process
30.http://building.seesparkbox.com
31.http://www.smashingmagazine.com/2012/05/30/design-process-responsive-age/
32.https://balsamiq.com/
33.http://agilemanifesto.org/
34.http://getbootstrap.com/
35.http://foundation.zurb.com/
36.http://sass-lang.com/
37.http://lesscss.org/
38.http://bourbon.io/
39.http://purecss.io/
40.http://www.invisionapp.com/
41.https://marvelapp.com/
42.http://macaw.co/
43.https://www.apple.com/mac/keynote/
44.The Art and Science of Web Design, Jeffrey Veen (2000).
45.http://styletil.es
46.https://speakerdeck.com/bencallahan/get-your-visual-style-on
47.https://vimeo.com/115992327
48.http://styleguides.io/podcast/samantha-warren/
49.http://danielmall.com/articles/rif-element-collages/
50.https://twitter.com/katiekovalcin
51.http://sparkbox.github.io/style-prototype/
52.http://building.seesparkbox.com/style-prototype/
53.http://twitter.com/adactio
54.http://bdconf.com
55.http://vimeo.com/32143919
56.http://twitter.com/brad_frost
57.http://bradfrostweb.com/blog/post/atomic-web-design/
58.http://twitter.com/brad_frost
59.https://twitter.com/anna_debenham
60.https://twitter.com/jina
61.https://twitter.com/bermonpainter
62.https://twitter.com/dmolsen
63.http://patternlab.io
64.https://twitter.com/falkowski
65.http://styleguides.io/
66.http://engineering.lonelyplanet.com/2014/05/18/a-maintainable-styleguide.html
67.https://vimeo.com/47171001
68.https://twitter.com/stephanierieger
69.http://seesparkbox.com/foundry/there_is_no_breakpoint
70.http://www.markboulton.co.uk/journal/theinbetween
71.http://www.slideshare.net/yiibu/pragmatic-responsive-design
72.http://www.amazon.com/Flow-The-Psychology-Optimal-Experience/dp/0061339202

[image: Chapter Illustration]

Responsive Design Patterns And Components
By Vitaly FriedmanWe’ve all been there: responsive design is manageable, but it isn’t straightforward; its premise shines through once it’s designed and built, but throughout the process it poses hidden challenges and stumbling blocks. Consequently, the workflow often feels remarkably slow and painful. Responsive design prompts us to reshape our mindset and refine our practices, but also to explore new interaction patterns across a wide variety of screens, input modes, and connection types. However, we don’t have to reinvent the wheel every single time we stumble on a design problem. That’s what good ol’ design patterns — essentially common techniques for tackling common issues — are pretty useful for.
Yet just as design patterns can be helpful and convenient, they can also be misleading, driving us to generic and soulless designs, mostly because we often lack context when applying them. More often than not, we don’t know the rationale or the objectives, the failures, usability tests, the impact on conversion rates and all the decisions made along the way, so we have to make our decisions merely trusting other decisions in other, possibly unrelated contexts.
Now, obviously, every project is different. Every project poses unique challenges, with different audiences, goals, requirements, constraints and objectives. So it shouldn’t be surprising that sometimes applying design patterns directly will work just fine, while other times it will fail miserably when validated in the face of reality. That’s a risky undertaking indeed; with design patterns thorough testing isn’t just important, but crucial for getting things right.
We’ve all learned from our own experiences that responsive design isn’t just a set of media queries used to patch broken layouts. It’s much more difficult than that: in our work we see it as a complex multi-dimensional graph with dimensions ranging from typography to performance. As designers, we have to put just the right dots at just the right spots across these dimensions to ensure that we create a scalable and maintainable multi-device system. Usually it’s not simple nor straightforward.
[image: Designing systems]
When crafting responsive experiences, we have to consider a number of dimensions at once: not only design constraints such as typography, navigation or performance, but also strategic decisions such as hostile browsers, narrow screens, touch input or maintenance. To tackle this complexity, we have to shift our focus towards designing resilient and reliable design systems.
In fact, while design is often seen as a continuous process, going from start to finish in a series of smooth, successive iterations, I find that more often it’s a meticulous series of sprints — finding solutions, refining them in iterations, hitting dead ends, and starting over again and again — until you find a solution that works well within the context of a design, which eventually brings you to your next design problem. The main issue is that those dead ends are really expensive. This is when you lose most time, and when recovery can be very difficult and frustrating. Design patterns help you recover from hitting these dead ends; they can reroute your decision-making process efficiently. They can also allow room for creativity as long as you don’t follow them blindly.
[image: The design process is tricky and unpredictable]
The design process is tricky and unpredictable. It’s not a continuous process with successive iterations, but rather hitting and overcoming dead ends over and over again. Image credit: Julie Zhuo1.
Over the last few years, I’ve been spending quite some time in small and large companies, solving responsive design problems, primarily related to UX and front-end performance. I’ve seen a number of design solutions emerging, evolving and flourishing, and others getting shot down in merciless user interviews or performance audits. I rarely found unique and obscure solutions suddenly coming out of thin air, though; more often they were built on top of already existing (and seemingly established) design patterns, supported and informed by trial and error, and fine-tuned by permanent, ongoing design iterations. Ideas don’t come out of nowhere, they are built on top of others; I believe this holds true for design patterns as well.
What does this mean for a design process? Well, I think it’s perfectly fine to choose design patterns and build your own on top of them. When coming into a company to work on a project, our team can’t afford losing time because we have just a week or two to produce meaningful results, mostly functional prototypes. We can’t spend too much time on high fidelity mock-ups or on complex custom cross-browser components which might take weeks of development. To stay efficient, we can’t spend a lot of time on high fidelity in the prototyping stage. In most cases, we have to be pragmatic, efficient and selective; to achieve that, we explore design patterns and test them against reality with actual users — early, quickly and often. Rinse, iterate, repeat.
[image: Styleguide boilerplate patterns]
A reference spreadsheet2 containing components and popular frameworks or pattern libraries in a handy overview.
During prototyping, we often use CloudFour’s elements spreadsheet3 that lists a number of components against frameworks and large pattern libraries. If we need a very specific component, we might find it in there and build a prototype very quickly. It doesn’t mean that this is just the right solution for our problem, though, and it doesn’t mean that we are going to use this piece of code in production either. But for prototyping, it can be extremely useful.

In these situations, patterns (among other things) prove to be extremely handy time-savers — again, not because they always work everywhere but because they give you a sturdy foundation, and as you keep working on the design they often help you converge toward the final solution much quicker than if you started from scratch. Of course, sometimes you have to start from scratch after all, but knowing solutions that worked (or failed) in real-life projects helps you better shape and guide your decision-making, and limits your options, which I find extremely powerful and liberating in the design process.
That’s exactly what this chapter is about: clever design solutions, obscure techniques and smart strategies that I’ve seen working or failing in actual projects, and which could be applied to your projects, too. You might not be able to use all of them, but hopefully you’ll get a good enough idea of just what kinds of solution might work well in common situations when designing or building responsive websites. Let’s start. Fasten your seat belts. It’s going to be quite a journey.
Navigation Patterns
Surprisingly, making navigation work well across a large variety of devices often proves to be one of the most challenging and involved undertakings in responsive design. And it’s often not just a matter of organizing all existing content but rather reducing existing complexity and setting priorities well.
Priority Lists for Content and Functionality
Priorities are often tough to agree on, though. While asking clients what is and is not important rarely yields meaningful results, listing important pages in a spreadsheet and asking clients to assign priorities to them often does the trick. As one of the first steps in the design audit, we prompt the client to assess and state priorities by marking pages (or features) which are of primary, secondary or tertiary importance. This classification helps group items accordingly and shifts the focus of the experience toward more crucial tasks or content, or at least prioritizes them in the navigation later.
You can actually suggest priorities (“user” view) in a spreadsheet as well, and if they aren’t quite right you will surely be corrected by the client. The client’s assessment is likely to reflect business objectives (“client” view) which then have to be weighed up and balanced with the user needs you indicated. Even if you don’t get a clear overview of what content or features matter most this way, you still introduce the notion of priorities into the conversation which can be helpful to drive the design process in the right direction — towards focused multiscreen experiences, with the focus on content and how it’s organized, of course.
The Content Is for Everyone: Content Parity
Having clear priorities is useful, but alone it doesn’t justify removing or dismissing any piece of content or functionality altogether for any screen — just because users expect everything to be available everywhere. That’s why, over the years, content parity has become an established paradigm for delivering content to users. Obviously, content parity doesn’t mean that every experience is going to be identical for every user (it can’t be), but all pieces of content should always remain available, whatever settings and input modes the user uses.4 In other words, you don’t have to show all content or navigation options at once, but they should remain accessible on every device, perhaps appearing on a tap in an accordion or via click-through in the navigation drawer.
[image: WWF]
In a narrow view, WWF reduces the entire navigation to three critical items: two calls to action and a navigation icon, leading to primary navigation.
WorldWideLife.org is a good example for this pattern: in a large view, we see a series of drop-downs (actually, every single navigation item is a drop-down), which get reduced to two main call-to-action buttons and a navigation icon (the infamous hamburger icon) in smaller views. Once you click or tap on the navigation icon in a smaller view, you don’t see all the navigation levels at once, but only primary navigation items. These links take you to a page containing further navigation options, unlike the links in a drop-down or multilevel accordion, which are all presented at once. In fact, sometimes you don’t need to show all options at once; for mobile, prioritization is both crucial and necessary to avoid a cluttered and inefficient interface.
A multilevel accordion could be a useful solution in some contexts, but it’s worth testing to see if your visitors actually access a fifth-level navigation item via an accordion or just use search instead. Obviously, it depends on the task, too, but polluting HTML with five levels of navigation or sending AJAX requests to fetch more navigation might be unnecessary.

In some situations, it might be worth deviating from this principle by showing context-sensitive content, based on assumptions derived from screen width, touch support, and geolocation. For example, if you provide online banking and your application isn’t responsive just yet, you might want to show a link to the mobile banking login, as well as opening hours and the closest branch nearby, like KiwiBank5 does. The information should be available in the other views as well, but it could be presented differently.
[image: Kiwibank]
On KiwiBank, all content is consistently available everywhere, but priorities change depending on the viewport. That’s a risky undertaking, but it could be worth testing at times.
A restaurant could show directions, distance from your current geographical position and expected arrival time, as well as reservation options taking that timing into account — e.g. on tap, in an accordion. Obviously you could argue that these pieces of content would be equally important for desktop experiences, too, but perhaps you’d need to display them differently. Priorities matter: and thinking about them up front can often go quite a long way to help establish a consistent, good user experience.
Fancy Hamburgers, Obscure Canvases and Sneaky Wordings
When it comes to priorities, actual content always deserves special attention. Since the focus of the user experience should always lie on content, everything else has to get out of the way, and this holds true for navigation, too. That’s where the infamous off-canvas pattern with the at least equally infamous hamburger icon comes into play.
[image: Star Wars]
StarWars.com probably has the most unusual “hamburger” navigation, with three horizontal lines turning into lightsaber on click — and a navigation drawer sliding in from the left side.
You know how it works: in a narrow view, users might see a few main navigation options (such as Search, Cart or Menu buttons), but they don’t see all available navigation options right away. These options are revealed via a navigation drawer on click or tap on Menu, sliding in from the left, the right, the top or sometimes sliding in between the logo and the main content area. What sounds like a pretty much established and widely accepted paradigm doesn’t necessarily work flawlessly in every context. We noticed that navigation items hidden behind an icon almost certainly result in a (much) lower engagement ratio when compared with links displayed on the page — and consequently produce fewer clicks. Besides, if critical items of your interface (such as a shopping cart or login) are hidden off-canvas, users can get impatient and frustrated. Such navigation items would be better off displayed on the page, perhaps with a noticeable icon, in a tab, as a button or as a simple link.
It’s not just about engagement, though. We’ve also noticed that when using the off-canvas pattern we always ended up with an uncomfortable viewport range between the standalone hamburger icon on very narrow views and a fully fledged navigation menu on larger views. The problem: when exactly do you start displaying full navigation? Or, the other way around, when exactly do you start hiding full navigation behind an icon? And what exactly should happen on screens which are neither narrow nor particularly wide? Well, usually we would just dismiss it as an edge case and not display any navigation items at all, although we might have enough space to show something usable. That’s suboptimal at best.
And then, of course, the issue of internationalization comes along: what if, on top of the existing uncomfortable viewport range, you need to accommodate navigation for a dozen languages? To keep your codebase maintainable in the long term, you can’t keep creating media queries based on every supported language (e.g. by adding classes on the <body> element); you’d have to create a mess of additional classes, or even style sheets that would need to be revisited once the navigation changes dramatically.
You could use a little JavaScript to measure dynamically how much space you have and either turn a search box into a search icon, or turn navigation items into a menu icon when there is no space left for the container to be fully displayed within the current viewport width. Libraries like makeFit6 do just that by observing the resize event and adjusting the layout accordingly. We tend to use JavaScript as a method of last resort though.

[image: Keiho]
The uncomfortable range. All navigation items could potentially be displayed, but instead, they are hiding behind the infamous icon.
Of course, you could solve some of these issues with iconography, but icons aren’t always universally understood and often it’s just not an option: what icon would you choose to display “Our philosophy” or “Delivery times”? Not surprising, then, that in many scenarios the off-canvas pattern seems like the simplest and safest strategy to keep navigation options out of the way, yet still accessible and unobtrusive, so the navigation won’t break or pollute an existing layout, independent of the languages you choose to support in the future.
Another thing we noticed is that, when implemented without a thorough content inventory, the off-canvas drawer might end up containing many unnecessary secondary items and many nested levels of navigation. Sometimes it’s required and expected, but more often it isn’t. Therefore, when we start working on a project, we always look into options of focusing on primary navigation alone. If search is provided, we explore what happens if we remove secondary navigation altogether, both on desktop and on mobile, and how user experience deteriorates as a result. If the result is suboptimal, we add one level of navigation and measure again. If we still notice a UX problem, we keep repeating the process. And if there is a lot of content to organize, sometimes we look into providing something like a step-by-step guide from general to specific navigation items, very much like the GOV.UK homepage. When required, different nested levels in mega drop-downs could be accommodated via accordions, although they might not be absolutely necessary if search provides autocomplete or uses the type-ahead pattern.
[image: Gov.uk]
On gov.uk, different levels of navigation are displayed as layers, so all sections are available right away, with one click.
So what are we going to do with these hamburgers and canvases? Off-canvas is a good option, but it’s not a golden bullet. In fact, there are other ways to keep navigation out of the way yet still accessible and user-friendly; meet the first one, the shiny Priority+ pattern.
Show When You Can and Hide When You Can’t
With the Priority+ pattern, instead of hiding important navigation items in smaller views, we use all available space to show as many items as possible, prioritized from left to right in LTR interfaces, and from right to left in RTL interfaces. At the end of the navigation list, you then provide an interface element to toggle the view of all navigation options, via accordion, an expandable area, or a discrete modal window. Obviously, the “More” link or full navigation icon would need to be aligned right in LTR interfaces and left in RTL interfaces. As Brad Frost rightfully states7, “[t]his ability to scan these labels left-to-right and feed right into the overflow ‘more’ link feels like a more natural discovery flow compared to everything hiding beneath an ambiguous icon.”
You could even go as far as displaying navigation options next to the logo, not using any additional vertical space for navigation at all. In that case, making your logo responsive — delivering different assets to different views — would be helpful as well, either via an SVG sprite or media queries within SVG to adjust the thickness of lines and elements of the design. Obviously, it depends on the complexity of the logo, but using responsive iconography to save precious vertical space on the screen for content could be worth considering for icons with a high level of detail.

The Guardian and Google Docs are good examples of the pattern in action. In every view, users see something: a few navigation items which hopefully are sorted according to their usage and priority. Because you prioritize important items, critical actions will always be reachable and visible, potentially driving more direct traffic to those important sections or features of the site. This could be particularly useful for cases with a large amount of heavily used navigation sections, such as an online shop which accommodates a mega drop-down in large views.
[image: The Guardian]
The Guardian shows as many items as possible in a horizontal bar, prioritized based on what’s most popular, and the rest is accessible in the “all” menu.
However, it’s not always clear what navigation icon to choose for a given scenario. In a few projects involving older people, we found that the hamburger icon isn’t widely understood and sometimes leads to confusion. You could argue that it’s just a matter of time until the hamburger icon becomes accepted, but it’s a safe bet to avoid any iconography altogether and use a clear label (“Menu”) with a clear affordance as a button8.
Historically, we used to place the icon in the upper corners of the screen, but larger screens made it difficult (if not impossible) to reach those interface controls with a thumb alone, which is a preferred mode of use by a large majority of users; it might be a good idea to place them as tabs at the bottom of the screen instead, or as a floating navigation icon in the bottom-right corner. The transparency of the icon could increase as the user keeps scrolling down the page, making it noticeable but unobtrusive, and still providing options on tap. Obviously, you wouldn’t want to embark on a hideous journey of position:fixed bug fixing, but there are some workarounds, e.g. position:sticky polyfill9.
If we do use the off-canvas pattern, we always tend to cover three critical use cases. First, when users tap on an icon or button to open the navigation drawer, they shouldn’t have to move their mouse or finger to close it again; the interface should display the button to close the navigation in exactly the same spot where it initially displayed the menu button. We found out that just as visitors use navigation to jump to the specific content they need, sometimes they want to explore available options without jumping deep into specific areas of the site.
[image: Al Jazeera and Hayom navs open]
If you have a lot of navigation, as Al Jazeera does, off-canvas is often a bulletproof solution. For less navigation, something as simple as content sliding in might be a better option, as shown on IsraelHayom.co.il.
Second, we tend to bring in a more detailed navigation drawer sliding from the left or right while we slide more focused or shorter navigation between the logo and the content.
Third, we tend to maximize the amount of content displayed on the screen, so we remove as much secondary content as possible including navigation, logo and any supplemental items. The content deserves room to breathe and the closer we can get to all of the space being reserved for content, the better the experience will be. It often means that the logo gets smaller in narrow viewports and the navigation button either disappears or floats with scrolling while fixed headers, footers or pop-ups are avoided at all costs. Medium10, for example, removes the entire navigation when a user starts to scroll down and reveals it again once a user scrolls back up. This technique might work for overviews of products as well as long reads, although we’ve never had a chance to test it in an actual project.
Your Content Should Live in a Perfect Rectangle
We spend a lot of time adding horizontal media queries to adjust layouts, but I’d argue that in many cases vertical media queries would be well suited for any layout adjustments as well. Since users prefer to use mobile devices in portrait mode (90%) and their screen height is usually smaller than a desktop’s screen height11, you could take into account the viewport area and try to ensure that users always see enough content, so the font size would depend on both width and height. In fact, you could easily automate the font size adjustment by embedding vh and vw units in your size calculation; for instance, body { font-size: calc(2em + 0.7vw - 0.3vh); } works great for a single-column layout, but might break a multicolumn layout, so choose a value for vw and vh units with caution.
[image: Southwest]
If you have many navigation options, you could use vertical media queries to show fewer items if there isn’t enough space to show them all.
A good example for vertical media queries would be a layout in which open navigation options cover a significant portion of the content. In such cases, you could reduce the number of displayed items (again, very much like the Priority+ pattern suggests) and add a toggle to switch to the remaining items if there isn’t enough vertical space to show them all at once (see Southwest Airlines example above). Another use case would be a vertical full-height navigation where you might want to adjust the blocks of content to fit the entire content on the screen. Also, paddings, margins, font sizes, and icons could be adjusted to tame the content within the screen. If you have a drop-down which appears in the middle of the page, you could review the amount of space available in the browser window under the drop-down, and potentially display navigation options above the drop-down when there isn’t enough space beneath it.
You could also detect device orientation and adjust interface controls to better match more comfortable hit areas, pulling them to the left and right in the landscape view, and to the bottom of the screen in the portrait mode.

You could even go so far as transforming a content-heavy page, which could feel almost endless on a narrow screen, into an accordion-like table of contents with progressive disclosure, so that users can toggle sections of the page and jump quickly to the content they care about, very much like Wikipedia12’s pages do.
In fact, in a large variety of scenarios, exactly this pattern — progressive disclosure with a toggle or accordion — proves to be a remarkably useful technique to tackle most content-related issues. If you have to break down the complexity of an interface component into something more manageable, or just simplify a seemingly crowded article page, you’ll be able to achieve good results quickly, as long as you group content logically and consistently. Whenever you don’t know what to do next, think of progressive disclosure as a workhorse at your disposal — it will do the trick more often than you think.
Breaking Down the Walls with Encapsulated Views
Breaking down complexity is probably the most common undertaking when implementing responsive navigation, yet the main mistake we make is showing all options at once on all screens, basically carrying over a vast amount of navigation overhead from the desktop to mobile experiences (or from mobile to desktop experiences when building mobile first). The problem becomes apparent when the navigation isn’t compact and straightforward.
What happens if you are running an e-commerce site with a number of filters for selecting size, color, and shape, and you want your users to be able to quickly switch to categories and perhaps compare products? Furthermore, to avoid unnecessary interactions, you’d like to update content automatically in the background when a user selects a filter, without them having to click on the “Submit” button every now and again. If you choose to show all filters at once, users might not see any content at all, so it will be loading in the background but users will have to scroll all the way down to see the content. You could reveal the filters by tapping on an icon in the upper-right corner, but once users have selected a filter and scrolled down to see the content, they will have to scroll back up again to adjust the filters. Both scenarios aren’t particularly user-friendly. So, what do you do?
[image: Filters on mobile and desktop]
A wireframe of an e-commerce page with a few filters. In a narrow view, users would see exactly 0% content, even with selected filters. Image credit: Daniel Wiklund13.
The simplest strategy would be to break down the single, large filters section into multiple detached, smaller sections. We then could show them at the bottom of the screen as three to four separate tabs instead of just one large block in the header of the page. Each of the tabs would need to have a clear label (e.g. “Color”, “Size”, “Price range”), and once tapped or clicked, reveal appropriate filters. Another option would be to have the filters float on the side as users explore the products they have filtered. A slightly more interesting option would be to hide the filters behind an icon in the upper-right corner and display them on tap or click as a persistent layer. This layer would cover a part of the screen (on narrow views, obviously, the less screen it covers, the better) while the content would appear in a semitransparent layer beneath the filters layer. So if users have relatively wide screens, they’ll see both the filters and the content. That’s also the reason why the layer is persistent: if users choose to close the filters section, they must have made up their minds, so (almost) the entire screen will be dedicated to the content and not filters; otherwise they might need to repeatedly open and close the filter drawer.
[image: Filters views and desktop]
With encapsulated views, we can show both the content and the navigation — as far as possible. In narrow views, we could use a persistent layer covering a part of the screen on the right, and on larger views, the filters could appear on the right side as well, for consistency. Image credit: Daniel Wiklund14.
This pattern is called the view mode pattern because the features and content of a website are divided into individual, encapsulated views (or cards, or layers) and connected within your interface. This way, you can recoup space even in smaller viewports while gaining the ability to update and process user input (which would need to happen asynchronously, causing a bit of performance overhead). This resembles the off-canvas pattern but could be used for more than just navigation. For instance, you could provide autocomplete search functionality in this way, or even design your entire checkout with each step sliding in from the side, showing the actual product being purchased during the entire checkout.
[image: Checkout Cottonbureau]
On CottonBureau.com, the checkout experience is designed with the “view mode” pattern in mind. Each step in the checkout is sliding off-canvas from the right, showing both the content and the checkout as far as the space allows for it.
The pattern can be remarkably helpful for complex components, and it could be further improved by allowing users to easily switch between multiple layers by just tapping on them. This technique is used by the Danish Cancer Society15 to enable users to both browse through the different levels of navigation (on the right) and see the content of the selected section (on the left) at the same time. In fact, the pattern passed usability studies with flying colors, and it’s still being used now almost a year later.
[image: Cancer.dk]
View mode pattern used on Cancer.dk to reveal navigation options while showing content on the left side. When users browse through navigation options, the content area is updated automatically.
The Almighty Fold and Nasty Carousels
Almost every single meeting I find myself sitting in involves an uncomfortable, toxic ingredient with a lingering and irritating bitter aftertaste. Yes, somebody sparks an endlessly painful conversation about the almighty fold, or more specifically, important interface elements that should stay above the fold. These conversations are remarkably misleading and counter-productive, and usually lack any user research data to prove… well, pretty much anything. When somebody raises a question about the fold and call-to-action buttons, it’s usually a warning sign that things are about to go south. Whenever it happens, (rather than freaking out and leave the room) you could question the validity of their arguments and request actual data.
As it happens, quite often above the fold isn’t as important as below the fold. As Luke Wroblewski stated in one of his talks, “The hardest thing on mobile is figuring out the right time and place to display an action”16 — displaying a call-to-action button very early at the top of the page is often neither the right time nor place to encourage that action.
Crazy Egg17’s recent redesign showed that short, concise landing pages don’t necessarily result in higher conversion rates when compared with longer pages. In the redesign, the challenger design was 20 times longer than the control but caused a 30% increase in conversion18, simply because the design team added testimonials and feature highlights that made a convincing argument at the right time and the right place. Again, to quote Luke from the same talk, “[t]he issue wasn’t whether the call to action was visible, but rather whether the call to action was visible at the point when someone has become convinced to take action.”
[image: Scroll depth]
[image: Engaged time scroll]
[image: Expected engaged time]
Perhaps “above the fold” isn’t the most lucrative area anymore — just above and just below the fold are.
But how do you identify this point? Well, you rely on research. According to a recent Chartbeat study, “Scroll behavior across the web19” by Josh Schwartz, the very first thing many people do when they encounter a website is scroll down. This is primarily because they can often find the logo, navigation, search field and ads at the very top of the page, occasionally accompanied by a window encouraging users to download an app — often there is just no useful content at the top of the page. In fact, some users start to scroll down a page before it finishes loading. The most viewed area of the page is just above the fold, at about 550px, with just over 80% viewership. The area between 750px and 1,500px is viewed nearly three times as long as the top portion of the page, with the peak at 750px seen by over 80% of visitors for an average of 13 seconds. This is where most people spend most of their time and this is where a call-to-action button would be best placed, provided that the work of convincing the user has already been done.
Another myth surrounding many conversations in the war room (also called “the meeting room”) are the benefits of carousels. Clients love them, but the verdict of the design community is pretty clear: carousels don’t convert. The images aren’t seen nearly as often as they should be, not to mention performance issues; hence, they should be avoided at all costs. To be honest, it’s not surprising most carousels aren’t efficient — all too often they are poorly designed. They are nothing more than an oversized image, with a few hardly noticeable dots (supposed progress indicators) and, if you are lucky, arrows on the side; or, if you are unlucky, automatically rotated images. However, carousels rarely give users any incentive to navigate to the next item, and once they choose to do so, the controls prove to be very difficult to use.
[image: Belavia and Amazon carousels]
Carousels aren’t necessarily dead. Poorly designed carousels are highly inefficient. Well-designed carousels could be efficient: there must be a clear incentive for users to flip it through. Belavia.by and Amazon.de in comparison.
Carousels can be designed better, though. Recently, Amazon adjusted its carousels by adding a vertical bar on the right-hand side to better highlight all items within the carousel using small thumbnails of the products and a descriptive caption of the offers, in effect creating a tabbed widget that is easy to tap and click. Still, the images in the carousel rotate automatically, but the experience isn’t obtrusive at all, providing helpful hints for valuable deals that users might indeed find helpful, without obscure dots and navigation arrows. When users click on one of the thumbnails, they know what to expect and they have a good reason to engage with the carousel. Amazon didn’t share any numbers, but after initial testing it has been rolling out the new design on every category page, so the results are likely not to be disappointing.
Optimizing for Larger Screens
Looking back at the last few years, most of the projects we spent a lot of time on turned out to be redesigns; designing and building a responsive website often boils down to somehow adapting the desktop experience to the mobile space. Consequently, if a component can be resized and squeezed into a narrow viewport, then it’s usually the first option that is considered. However, mobile often requires an entirely different approach; optimizing for narrow views is a matter not just of scaling down, but also rethinking the user interaction and coming up with an entirely different, unrelated interface pattern for that interaction.
And just as we have to rethink for narrow views, we have to rethink for larger screens as well. Quite often responsive websites appear to be designed with a maximal screen width in mind, so while they work well from views up to approximately 1,750px, the design feels lost on larger screens, with content stuck either in the middle of the viewport or aligned to one side of the screen.
If you have a robust visual design, you could enlarge the width of the container and increase the font size of its elements for larger views while adjusting the background image or background color of the site. This way, you create an illusion of filled space, like the Institut Choiseul20 does.
[image: Choiseul]
For larger views, you could center the layout and play with the background color to create an illusion of filled space.
If you don’t have a strong visual design in place, you could either display different pieces of content separately and prominently in multiple columns, perhaps as overlaying content areas; or shift one of the content areas to the left or to the right. An interesting example for that would be a search page; when users with large viewports click on one of the items in your search, the page could appear on the right with the search results still present on the left, and on narrow screens only the requested page is displayed. That’s what the Kremlin website21 does, always accommodating the available space intelligently.
[image: Kremlin off canvas and narrow view]
On narrow viewports, the Kremlin site shows either the content or the navigation.
[image: Kremlin large]
[image: Kremlin very large]
If there is enough screen to fit multiple pieces of content at the same time (e.g. both the search results page and the actual search result) you could show both at the same time.
This pattern could be applied in other scenarios as well; for example, if you have a gallery in your article or product page, in larger views the images could float to the right, next to the article; or slide into designated areas in narrow views. The same goes for comments, surveys, and any other supporting content.
Tables Are Too Useful to Die
There are a few well-established navigation patterns that could be tweaked for specific contexts, but what about more rigid interface components, such as tables? While navigation menus are often merely lists of anchors, pieces of content residing within tables often have firm relationships, manifested by their position and their column and row headings. When it comes to displaying tables, we should not only present the content but also respect these relationships. This causes a few headaches when designing for narrow views simply because tabular data requires some space to be fully displayed.
If we display a table as it comes, the content will likely be hard to scan and read; tables are regularly rendered either too small for comfortable reading or too large for comfortable navigation. What do we do then? The few reliable options we have depend on changing the orientation of the table from horizontal to vertical, or displaying tabular data and relationships in fragments.
The first option isn’t difficult to achieve: we could either flip the headings to the left or right or just turn all table cells into block elements and show them in a single column with corresponding table headings serving as labels. This works well for small tables but becomes unwieldy for more complex tables, creating long, potentially annoying pages which are difficult to scan. We already know what works well in most scenarios, though: accordions! To keep the <datalist> shorter and more compact, you could turn single blocks of content into accordions or toggles and reveal content on tap or on click.
[image: Swissair table]
SwissAir.ch provides many interesting subtle examples of a smart responsive design. One of them is a flight selection table, changing orientation from horizontal to vertical between large and narrow views.
Certain tables call for specific and sometimes creative solutions. For instance, if you’re designing a table to allow users to select a flight, with outgoing flight options lined up horizontally, and return flight options lined up vertically, you might end up with a table in which every cell contains a radio button. While radio buttons often require a very predictable amount of space to be clickable or tappable, headings in such scenarios would usually occupy more horizontal space, making the table unnecessarily wide. In this case, you could tilt column headings a little (perhaps 45–65 degrees) to regain some of the horizontal space at the expense of some vertical space.
[image: Rotated columns]
Sometimes you might want to tilt headings a little bit to regain horizontal space by sacrificing some vertical space. It really depends on the nature of the table. Credit: http://codepen.io/anon/pen/WbzbbQ22.
A table shouldn’t always remain a table, though. When dealing with a sports tournament table, such as the NFL Playoff coverage archive, for example, a multilevel tabular view might be appropriate for wider views but wouldn’t work well in narrow views. You could adjust the spacing, font size and level of detail, but it might not do the trick. Instead, you could altogether reimagine the entire experience, and show the Super Bowl game in the middle within a slider, and allow readers to explore the AFC and NFC leagues by moving to the left or right, perhaps with convenient toggle buttons or swipe action.
[image: SBNation tournament table]
A tournament table isn’t easy to design: SBNation.com went for turning a table into a slider, although a set of accordions with a more condensed view might work just as well.
Think about the specific properties and structure of a table before settling on a solution. You might discover similar table issues when designing any kind of survey, or selecting tickets for a performance (with dates presented as columns, shows presented as rows), or any other experiences where multiple selection is in place.
[image: Swissair]
On narrow views, SwissAir.ch shows a condensed view with radio buttons aligned vertically; on a larger view they appear as layers. Notice how breadcrumbs change between views.
Another option would be, again, to display some columns as cropped encapsulated views or layers, as mentioned above. That’s exactly what SwissAir’s website23 does. If one of the table columns is particularly important, you could also keep it fixed while making the other columns scrollable, so when users start reading the table, they always have a clear association between the content that they read and the row where it belongs.
If the data in your table is mostly numerical, you could visualize it as a graph or chart in both narrow and desktop views, and provide a link to a full table view for users who wish to see the tabular data instead (as well as a “graph” view for users wishing to see a chart on desktop views).
These solutions work well, but they aren’t always applicable. Content can be incoherent, data relationships could be strict and the table might not have any consistent structure. In these cases, displaying tabular data in fragments — again, reducing the complexity of the component — can work remarkably well. The idea is simple: since we can’t make any assumptions about the columns or rows that users would or would not like to see, we could allow them to select columns of interest while at the same time providing an option to show all columns as well.
The way you could design this experience would be by adding a few buttons above the table: perhaps a “Display all” button that, once activated, shows the entire table at once; and a “Display” drop-down, with all columns listed as checkboxes. If users are interested in specific columns, they can select the those and dismiss the others, thereby reducing the amount of content to display and potentially fitting it well in both narrow and wide views. You’d need to choose the columns to be displayed by default, and this selection might change depending on the available viewport width (or height).
[image: RWD table]
If we can’t make any assumptions, it’s safe to just ask users what they’d like to see. Perhaps with a “focus” view for a slightly better scrolling behavior. Source: http://gergeo.se/RWD-Table-Patterns/24
Such a design pattern is quite manageable; but what happens when the user is interested in seeing all the columns at once? We’re back to square one, with a poor initial experience: zoom in, zoom out, add a dash of horizontal scrolling. That’s simply not acceptable. In usability tests, we noticed that users often feel lost in such complex tables, especially when data is mainly numerical. Users aren’t quite sure whether the value they are looking at actually corresponds to the column and row headings that they were interested in at first. To tackle this problem, tapping or clicking could visually highlight either a column or a row or both, and establish a clear relationship between the fragment of data the user is reading and the column and row it belongs to.
Another option is to show the first few columns first and display a stepper control to enable users to move easily between sets of displayed columns. When a viewport accommodates four columns of a ten-column table whose first column comprises table headings, you could keep the headings column fixed and show the next three columns first, revealing subsequent columns on click or tap, and so on. For a narrower viewport, you could reveal two columns in each step, with the headings column remaining static. Additionally, an indicator could present how many items are currently in view, very much like we do in carousels.
[image: Mini map]
You could also integrate a mini map and combine it with a selection of columns the user wants to see. Source: https://github.com/filamentgroup/tablesaw25
FilamentGroup has released Tablesaw26, a comprehensive group of small JavaScript libraries for managing tables. Among other things, it covers many use cases highlighted in this chapter.

These last solutions often seem more appropriate for tables than a <datalist>, unless the nature of the table requires all columns to be present at all times. In an overview of pricing options, insurance plans or a car comparison, different columns and rows might have different weight for users, so allowing them to select columns or rows of interest could work well. But when it comes to flight selection, seat selection in a theater or checkout in an online shop, the integrity of a table is vital. There, a <datalist> (potentially with an integrated accordion if there is a lot of data to show) might be a more appropriate solution.
Pull Content Out, Break It Down, Put It Back Again
While these approaches work well for tables and data grids, they won’t necessarily work for calendars: with days of the week lined up horizontally, for example, and time of day lined up vertically. We could decide to drop all Fridays as well as a specific time range (such as 12pm–2pm for lunch breaks) but it would pretty much ruin the purpose of a calendar. It might be even more difficult if we decide to lay out days of the month against days of the week. A <datalist> option would, again, potentially end up with an annoyingly tall page or an overwhelming number of accordions all at once; and what if a user wants to see a cross-column/row selection after all (for example, all Friday evenings in a given month)? Retrieving this information would require them to open four accordions, for every Friday in a month. That’s not user-friendly.
In this and similar scenarios, we should take a step back and look into options of reducing the fidelity of the initially displayed content. Do we need all icons in the calendar? Do we provide any meta information that could be displayed separately? Can we use ellipses to shorten the amount of text? What else can we remove to keep the calendar focused and retain its integrity on narrow views as well?
That’s the exercise we run through as a team every time we encounter not only calendars, but pretty much any complex component that can’t be modified easily without compromising user experience. By simplifying content fragments within the component, we can always break down its complexity and focus on the core content it contains.
Ultimately, there is always the option of pulling the content out of the component, identifying and grouping content fragments logically, and presenting them as separate encapsulated views within a few subsequent sections on a page. For a calendar, you could choose to pull highlighted items and present them in a smaller, focused tabular view in narrow viewports, while all the other items could be displayed in a <datalist> underneath the table. If you need to design a city map with numbered markers within the map and detailed hints about specific locations displayed on tap or hover, you could reduce the fidelity of a map in narrow views, and pull out the content beneath the map as a <datalist>.
[image: Muse calendar tablet and narrow screen]
[image: Muse calendar]
A calendar doesn’t have to look like a calendar across all screens. You could use the content from a calendar and display it in two separate views on narrow screens, like Muse does.
What if you are designing a platform for selling tickets to any kinds of event, be they concerts, baseball games or cinema screenings? You’d like venue owners to submit a seating map for their venue to you, along with an overview of the most expensive and most affordable areas, so buyers can visit your site and purchase a ticket to the show. Visitors should be able to select an area where they want to sit, but beyond that they should be able to zoom in to the area of interest and select both the row and, once zoomed in again, the actual seat they’d like. Obviously, the entire website should be fully responsive, too.
One way of solving this would be to introduce what is known as the assistant pattern — complexity is reduced by asking users to set some preferences first (the pricing range or the seating area, for example) to lower the level of detail required on the map and remove markers that aren’t useful. We then get a more manageable map, perhaps with slightly larger dots to comfortably accommodate 44×44px hit areas. Underneath the map, we could provide an overview of options listed either by seating area or price — adjustable by users. When users choose to explore an option, they are zoomed in to the area of interest and receive further details about the seating in the information area beneath the map. Moving back through the list of options would zoom out the map view. Alternatively, you could also use a slider to enable visitors to define precisely the level of detail they’d like to see.
This experience could translate to both narrow and wide views, and we could take advantage of available space to display a more detailed map in larger views. Again, the strategy of breaking down complexity and creating a few smaller and more manageable content fragments could go a long way in pretty much every responsive design issue you’ll encounter.
Adjusting Micro-Components
Breaking down complexity isn’t always necessary. Components can be relatively simple with pretty straightforward ways to make them work for the whole range of screens — if you have the right idea of how to adjust their design and behavior.
Progress Steps
For example, think about the progress steps or breadcrumbs in a checkout. If a checkout takes four or five steps in total to complete, displaying the entire user path through these steps would require way too much vertical space in narrow viewports. Instead, we could use the content property with a pseudo-class in CSS to display the current step as plain text, with arrows pointing to the previous and next steps (see Hrvatski Telekom Screenshot for comparison). A very simple adjustment that doesn’t require a lot of work, but produces a perfectly sensible result.
[image: Hrvatski Telekom]
Hrvatski Telekom shows a fully fledged breadcrumbs navigation in large views and turns them into plain text in narrow views. Image credit: Marko Dugonjić.
Timelines
For timelines — either horizontal or vertical — marking important milestones or dates on either side, an almost natural solution would be to flip the timeline to a vertical view and perhaps display the content for each milestone via a toggle.
[image: Timeline]
A timeline: horizontal orientation in a large view, vertical orientation in a narrow view. Nothing spectacular, really.
Graphs and Charts
When it comes to graphs and charts, you could create highly sophisticated, and perhaps even animated, responsive charts with SVG and CSS using Chartist.js27; you might need to reduce the fidelity of the chart and tweak the appearance and position of labels to keep them readable in narrow views (see the responsive data charts at Informed Design28.
[image: Chartist.js]
Responsive graphs aren’t easy to manage, as long as you create them with SVG, and not as static images. For example, with Chartist.
Maps
If your chart accompanies a map and you use polygons on the map for user input, sometimes the map’s fidelity can’t be reduced without making interaction inconvenient for users. For example, an SVG map of the United States, every state a polygon, could allow users to click or tap on polygons to select a state (perhaps as a filter for specific items related to that state); but the further the map is scaled down, the more difficult it becomes to select a state. A bulletproof solution would be to use a simple drop-down in a narrow view, with progressive enhancements up to a fully interactive map when the space allows for it.
The solution isn’t as straightforward, though, when you need to display a large preview of the entire map and not only a cropped region of it. First of all, we could use Thierry Koblentz’s padding-bottom hack29 to create a fluid map that preserves aspect ratio30 to keep the focal point of the map centered31.
In usability studies, we noticed that embedding Google Maps or any kind of iframe often leads to confusion: when users decide to scroll down a page, they get dragged into the map and find themselves scrolling the iframe instead. The only way out is to tap an area outside the iframe and keep scrolling there; but if the iframe takes up a lot of vertical space, getting out of it can be painfully difficult.
[image: Travois]
Travois32 uses progressive enhancement to turn a simple, accessible drop-down into an interactive SVG map for larger views.
In such cases, you can use two workarounds to improve user experience. First, for every map embedded in your site, you can create a semi-transparent <div> overlay that would cover up the entire map, like a layer of ice covering a river on cold winter nights (poetic, right?). When users scroll down through the page, they will slide over the empty <div>. If they do decide to access the actual map, they need to click or tap the map first, so the <div> will be removed from the DOM via JavaScript. Users without JavaScript support would receive a link to the Google Map page via <noscript>.
A slightly better pattern to achieve almost the same experience is exhibited by adaptive maps33, where we load a basic text link to Google Maps by default and additionally load either a static map image for small screens (preview) or a full iframe map for larger screens — preferably conditionally, so we don’t have a performance overhead in either case.
Lightboxes
The same adaptive logic could also be applied to lightboxes which so often break user flow on narrow views. Quite a few websites simply squish a lightbox as a fullscreen overlay, with heavy lightbox scripts and tiny interface controls. However, this behavior goes against the logic of why lightboxes exist in the first place. As Jordan Moore so eloquently wrote34: “[t]he purpose of a lightbox is to display a larger image corresponding to the selected thumbnail version while keeping the user on the same page instead of linking directly to a page showing the full image. […] In fact you may argue that a lightbox shouldn’t even exist on small displays.”
Which hits the nail on the head. But if a lightbox shouldn’t exist on small displays, how do we deal with it? Actions that happen in a lightbox on large views are often best handled as separate pages on smaller screens35, so if you have an interaction that requires user input, dedicating an entire page to it in narrow views might be a good idea.
When your lightboxes contain only photos (a product gallery, for instance), you could present them within a swipeable area in narrow views, or you could simply link to the image file directly by default. Opening an image “allows the user to pinch and zoom to read what could otherwise be entirely illegible.36” Then you could detect the screen size and decide whether to load a lightbox script or not, and if the screen is large enough to accommodate the lightbox, inject the script on the fly. Again, no performance overhead and a better experience for everyone.
Footnotes and Sidenotes
When working with magazines publishing long reads, you might end up with situations when an article features a number of sidenotes, footnotes or pull quotes. You could try to squeeze the sidenotes within the article, perhaps right after the paragraphs which they relate to, but if they are lengthy they might interrupt reader’s flow. On the other hand, with footnotes displayed as <sup>-links, users will have to jump to the foot of the page, read the footnote and then jump back to the reference, which is fine but a bit noisy and creates extra work for the user.
[image: Bigfoot.js]
Instead of putting sidenotes within the text or footnotes at the foot of the paragraph, we could introduce inline notes and pop-overs, enhanced with JavaScript, e.g. with BigFoot.js.
An interesting way of dealing with these issues is by using inline footnotes as pop-overs. You could use BigFoot.js37 to automatically detect the footnote link and content, turn the link into a large enough button, and open a pop-over when the reader clicks on the footnote button. Of course, the pop-over has to be positioned on the top or bottom automatically (based on the amount of space available), should update its location as the viewport changes size, and should never scroll offscreen. You could apply this technique to sidenotes as well: just turn them into inline footnotes at the end of every paragraph, with a different CSS styling to keep them distinguishable, and they will be fully displayed on click or tap.
PDF
Yes, you read it correctly: PDF. We spend a lot of time talking about removing all render-blocking resources from the critical rendering path, but I believe we don’t spend enough time discussing how to deal with good old-fashioned PDFs. PDFs are often very heavy in file size, sometimes uncompressed, and difficult to read on a mobile screen. If your users happen to be on a slow connection, the chances are high that they won’t even bother downloading a PDF file because they won’t be able to read anything from it until it’s been completely downloaded — unless the PDF is opened in a smart browser with an integrated PDF viewer. But what if a user knows that the content she needs is on page 17? There is no way of accessing it before the first 16 pages have been downloaded and rendered.
[image: Responsive PDFs]
Instead of providing only a link to PDF, we could generate thumbnail preview for all pages and make them available to users additionally to the PDF view.
Now, we could generate different versions of the PDF for different views and serve them conditionally to different screens, but it’s inconvenient and involves unnecessary work. Instead, we could generate a (relatively) large thumbnail version of each PDF page, save it highly compressed and provide an overview of all pages to the user, as well as a PDF file. If users want to jump to page 17, they can do it via a thumbnail view. The image received will not look particularly impressive, but it will load fast and it will contain the information users need. And if they decide to download the PDF file after all, that option is always available. This is exactly what Energy Made Clear38 does, and it does it very well indeed.
Custom Responsive Elements
Sometimes the nature of a website requires you to get quite creative when searching for a solution, so relying on more common components like the ones listed above won’t really help. What if you’ve been asked to design a fully responsive site for living sheet music and guitar tablature with interactive notation and tabs, for example?
[image: Soundslice]
Interaction music notation, with chords and tablature adjusting depending on the screen size. With a bit of SVG, <canvas>, JavaScript and media queries.
Well, you start exploring. In such rare cases, you would need to figure out how to create custom responsive elements, perhaps with SVG or in <canvas>, and then decide how the content should be adjusted to be properly displayed at different screen resolutions. The front-end engineers behind Soundslice39 had exactly this problem, and the way they solved it was by introducing adaptive notation in which the displayed size and thickness of chords and pauses is recalculated and redrawn in <canvas> when a window is resized. I’d argue that if you can make sheet music responsive, you can make pretty much anything responsive, wouldn’t you agree?
Dealing with Complex Visual Design
Well, you probably would agree, unless you have a very complex visual design to deal with. Coping with an abundance of visual content is often one of the reasons why responsive projects become frustrating, with the designs becoming generic, flat and oversimplified. In terms of workflow in such cases, different viewports often require intense art direction to keep the design consistent, with different visuals and different layouts for those visuals in place. In practice, it requires a bit too much extra effort, so it’s generally more convenient to settle for a slightly simpler and more minimalistic design in a narrow viewport, and then add visuals only for larger viewports. It’s not the only option, though.
Japanese and Chinese websites are a good primer for heavy visual responsive websites with a consistent design across viewports; in many ways they feel more advanced and thought-through. Not only hero photos or product images are art-directed; also complex infographics, step-by-step guides, video backgrounds and supporting visuals along with animations and transitions are properly directed and adjusted for tap, click and hover. Of course, these pages are quite heavy at times, but the visual consistency is very apparent in most cases.
It’s not just the culture that demands a lot of visual language in Asian countries. Because web fonts would need to support thousands of glyphs, loading them just isn’t viable, so text is embedded into images; and because mobile is dominating Asia, text has to be perfectly readable on narrow screens, so different versions of images are sent to different screens. Owing to this, Asian websites are almost inherently prepared for the art direction use case: there is just no way around it. Not surprising then that it’s an interesting space to explore patterns for dealing with visuals.

What if you have a number of heavily illustrated sections on a page, and these sections build up a content blob — a large area featuring all the sections at once? While you can be quite creative in your choice of visual arrangement in large views, you’ll have to be more restrained in narrow screens.
[image: Sapporo]
[image: Typekit]
Complex visual layouts on large screens can translate to slightly different layouts on narrow screens; often a list of navigation options works well, and so does a slider — but controls to move between content blocks could be helpful. Sapporo and Typekit.
Two patterns often work well in such scenarios: you could either turn each illustrated section into a full-width block and arrange all sections vertically in one column (see Support Sapporo40); or arrange all sections horizontally and use a slider to navigate through the items with a swipe (see Typekit41)
In the first case, you could use accordions if the sections are content-heavy; in the second case, it might be a good idea to ensure that a portion of the next section is always displayed (the overflow pattern), or, even better, add toggles in the top-right corner to let users easily navigate to the previous and next sections without having to swipe very precisely.
Davide Calignano has recently published a simple technique42 to keep a portion of the next section always visible with calc. Worth looking into.

So what can we learn from Japanese or Chinese websites? In many cases, background images have repeated patterns and are stretched for larger screens; secondary visual assets are dismissed in narrow views, but primary visual assets are more prominent than on larger views. More than usual, you’ll need to fit images within the container or a grid, either with background-size for background images or with object-fit for foreground images. Photography will often require art direction via the <picture> element, and heavy iconography might call for responsive icons.
Better, Smarter Responsive Web Forms
Nobody loves filling in web forms; however, they are perhaps the most common yet least enjoyable interaction on the web. Going from one input field to another and typing in data feels like such an outdated paradigm, but at first it seems that there isn’t much we can do to move away from it. Nevertheless, we could make the experience with web forms slightly better, in particular in responsive websites: we just need to figure out how to minimize user input and how to present required input fields intelligently, for narrow and wide screens.
Stacking input fields, text areas, and drop-downs beneath one another for better mobile experiences isn’t a particularly adventurous undertaking. But it’s the micro-interactions taking place between these input fields that could improve the experience. Ideally, we’d love users to be able to focus on one thing and do it fast: typing. It shouldn’t be necessary to move the mouse cursor or tap with a finger on an input field — users should be able to stay on the keyboard comfortably, without diverting their attention to anything else. Of course, the tabindex should still be appropriately set, so when users decide to switch to the next field via Tab on their keyboard, they can; but moving between the input fields might not necessarily require it.
Focus on Typing the Data
Swissair43’s responsive forms are a very good example of achieving exactly this goal well. When users make a selection (in a drop-down, for example, or in a calendar), they automatically move on to the next field and can continue typing right away, unlike most interfaces where you have to manually move to the next field when you’ve finished with the current input. Just such a paradigm is central to web form patterns suggested by Typeform44: the user always sees only one large input field at a time and can use keyboard shortcuts to make a selection or confirm input — by pressing “Enter” they move on to the next field. No drop-downs are used, no <select> menus employed — the entire experience is focused entirely on typing in data without any distractions. It works well on desktop, but it’s still a bit annoying on mobile where you will see the keyboard popping up and out again after every input.
[image: Typeform]
“One-input-field-at-a-time”-experience on Typeform allows users to fill in forms by focusing on only what they absolutely have to do: typing data. Everything else is taken care of automatically.
You could apply quite a few very subtle yet very handy tweaks in your form design pretty quickly:
•When a user arrives on a search page, be it related to booking flights, online shopping or a list of FAQs, activate the search box by default with the autofocus attribute.
•Provide valuable metadata to browsers by wisely assigning autocomplete attributes on input fields, helping them prefill the entire form automatically.
•Vertically adjust a textarea based on user input. Instead of reserving four rows for the input, you could stipulate just two and increase the height of the element dynamically so the scrollbar never appears.
•When a user has a lengthy address, allow them to dynamically add another input field for an optional second address line, instead of displaying it by default.
•It’s possible to prefill state, city and sometimes even a street from just the ZIP code.
•To ensure users never lose any data, temporarily store the input during a session in local storage. When a user accidentally hits “Refresh” or closes the window, the next time they open the window, all data will be preserved until the input has been successfully completed.
Not only the the design of input elements matters, but also the choice of input elements, too. In our projects, we tend to spend a lot of time thinking about ways to remove input fields and drop-downs altogether and replace them with slightly more comfortable input methods, such as sliders, toggles or radio buttons.
The Right Input Element for the Right Input
Some input elements are more suited for specific inputs than others. T-shirt size might be easier to select with a button rather than a drop-down menu. This could also act as a filter: once size is selected, other sizing options could disappear from the overview behind a semitransparent “All sizes” button. A price range would work better as a slider; the number of nights in a hotel, or any other discrete numerical input, would be better off with a simple stepper control.
[image: Foodbank]
Segmented control for a donation form: with a few items provided, instead of a large drop down or silent input field. https://www.pittsburghfoodbank.org/donate/feedthekids/45
A flight’s class with only a few options (first, business, economy) could be presented as tabs — segmented controls — with only one tap required to provide input. Special dietary requirements, for example, or any on/off states could be designed as a toggle. Such details make up the entire experience, so before we design (or redesign) a form, the first thing we do is take an interface inventory of all the input elements within the form. Chances are that the choice of input elements will have to change significantly.
Steppers and Sliders
Steppers and sliders are, however, the most convenient types of input (almost silver bullet techniques in form design!) and they could be used extensively in a variety of scenarios.
The main advantage of steppers is that they require exactly one tap to increase or decrease the value. This makes them helpful in checkouts (number of the same item in the shopping cart), defining settings and preferences (number of travellers on a hotel booking website), or any other selection of clearly discrete values. Steppers aren’t very helpful when the range of values isn’t restricted to a few items: they wouldn’t be a good fit when selecting the color of a T-shirt or the brand of running shoes a customer wants; a filter list might work better in these cases.
Steppers adjust a specific value quickly and precisely; sliders can help adjust a large set of values quickly, but not as precisely. Depending on the task, we can use a single slider with just one value (say, a specific date in history), or a double slider with a range of values (a min/max price range for a home). For predefined values, such as clothing size, we could use discrete sliders with fixed values that users can snap to easily; for indeterminate values such as price or temperature, we could use continuous sliders which don’t have any fixed values at all.
One caveat: if users can select any range of their choice, they might end up with empty results pages which are at best disappointing and not particularly helpful. To avoid this issue, you could extend a slider with additional metadata about the number of available products in specific ranges, creating a histogram slider, or inventory slider. You could design this by simply adding a bar chart above the slider, showing the number of available items at a given value, such as a price point. That’s what Airbnb designers decided to use for the price range of available apartments. This way you clearly indicate which range is most populated with results, and where they shouldn’t expect many results.
[image: Airbnb meta slider]
A histogram slider on Airbnb provides some metadata about the number of available apartments at a given price range.
Tackling Common Pain Points
The patterns described above could serve as nice enhancements for specific scenarios, but there are a few common pain points that could be resolved with a few less obvious techniques.
One of them is to ask users to verify their input, be it a password or email. There is no need to ask for a password twice: you could just use a toggle button to show or hide a password if necessary, and it’s a good idea to label it “Show” or “Hide” rather than relying on an ambiguous icon. Instead of asking for email verification, you could use email autocomplete to prefill email addresses based on common email providers, or automatically correct them. It’s also a good idea to let new users verify their email address before sending a message via the contact form, so they have a chance to correct it before sending the data, and you won’t end up with incorrect or mistyped email addresses.
To tame a web form’s height, we sometimes use input placeholders as labels to indicate what kind of data is required. However, if the input is lengthy or users are interrupted, they might lose the context of what exactly they were supposed to type in. That’s where the floating label pattern is useful: the labels exist as placeholders but when users start typing, the labels float above the field in a slightly smaller font size. It’s a nice way to keep both the input and context in place without losing too much space. If you can’t move the label to the top but a field is wide enough to accommodate it, you could float the label to the right or left in the narrow view as well.
[image: Floating label]
“Floating label” pattern in action: when users start typing in data, input placeholders turn into labels and float above the input field. Users see both: the label and their input. Source: http://mds.is/float-label-pattern/46
Some sites insist users are over a certain age. These sites honestly don’t care about the actual day and month and year when users were born, they care only about the age. Most visitors lie when challenged by this kind of input, so why don’t we make it easier for them to lie? Instead of asking for a specific date of birth, ask if the user was born in “1990 or earlier”, or any relevant year, and use it as the input value. It might not be feasible in every country, but it’s worth looking into.
Then there is the king of <select> drop-downs: the almighty country selector. Depending on your country of residence and your current geographical location, often users just don’t know where to look for their country. Will it be prioritized and displayed at the top of the list? Will it appear in alphabetical order? Will it appear in their language or in English? If you come from the Netherlands, should you look for “Holland”, “Netherlands” or “The Netherlands”? As a result, the drop-down becomes an endless, tiresome journey through known and obscure countries. Not the best form of travel.
[image: Country selectors]
Less smart and smart country selector. Asking a user to type the first characters of their country might be easier than scrolling through an almost endless list of countries.
Instead of providing a drop-down, ask people to type what country they are from. You could define synonyms for common input values to make your field smarter: whether a user types in “DE”, “Germany” or “Deutschland”, they’d get the same suggested value; the same goes for “NL”, “Holland”, “Nederland” “Netherlands”, or “The Netherlands”. More typing, but also more convenience for the user.
Obviously, if you care most about a specific input, such as email, or telephone input, your efforts should focus on that input. You could search for specific libraries that would support and manage this input, like an email autocompletion library or telephone formatting library. Don’t go over the top with libraries, of course, but the right tool in the right context can be just what you need to get things done well and tackle common pain points in no time.
Conclusion
Phew, that was quite a journey but, frankly, this journey wasn’t particularly comprehensive. There is a plethora of good, smart solutions to be discovered — it’s just up to us to look for and find them. Explore foreign responsive websites, because you’ll likely be confronted with unique interactions and patterns that you haven’t encountered before. Chances are high that your problem has already been solved.
In some circles, responsive design has a reputation for being difficult, complex, tiring and inefficient. Well, it isn’t. It isn’t if you have a good team around you, a good process in place, and a set of design patterns on which you can build your solution every now and again.
I hope you’ve found a few gems in this chapter that you’ll be able to apply to your project right away once you flip over this page. You will fail along the way, and you will start over, but you will eventually succeed and achieve better and smarter results much faster than you used to.

About the Author
[image: Vitaly Friedman]
Vitaly loves beautiful content and complex challenges, and does not give up easily. He co-founded Smashing Magazine back in September 2006 and since then spends pretty much every day trying to make it better, faster and useful. He runs responsive design training and workshops and loves solving complex UX, performance and front-end problems in large and small companies.
About the Reviewers
[image: Andrew Clarke]
Andrew Clarke is an art director and web designer at the UK website design studio Stuff and Nonsense. There he designs websites and applications for clients from around the world. Based in North Wales, Andrew’s also the author of two web design books, Transcending CSS and Hardboiled Web Design and is well known for his presentations and over ten years of contributions to the web design industry.
[image: Viljami Salminen]
Viljami Salminen is a web designer living in Helsinki, Finland. He has worked in the web industry for over a decade and has designed websites and applications for start-ups and companies of all sizes. His core belief is that all content on the web should be accessible to anyone using any kind of device to access the internet. He has created tools such as Responsive Nav, Responsive Slides and Remote Preview.
[image: Marko Dugonjić]
Marko Dugonjić is a designer, frequent speaker, author and editor at Smashing Magazine. He co-founded Creative Nights, a design consultancy specialized in user experience design, typography and web standards, where he improves customers’ digital experiences for international clients. He also contributed a chapter on web typography for the Smashing Book 4.

—
1.https://medium.com/the-year-of-the-looking-glass/junior-designers-vs-senior-designers-fbe483d3b51e
2.https://docs.google.com/spreadsheet/ccc?key=0AiN0QfBTPpOCdDFjWlM0eU1ra21XanZkekxGbjA2WWc#gid=0
3.https://docs.google.com/spreadsheet/ccc?key=0AiN0QfBTPpOCdDFjWlM0eU1ra21XanZkekxGbjA2WWc#gid=0
4.http://www.lukew.com/ff/entry.asp?1684 and Scott Jehl in “Responsive and Responsible.”
5.http://www.kiwibank.co.nz/
6.https://github.com/aaronbarker/makefit
7.http://bradfrost.com/blog/post/revisiting-the-priority-pattern/
8.https://twitter.com/lukew/status/443440251042676737
9.https://github.com/filamentgroup/fixed-sticky
10.https://medium.com/
11.http://www.uxmatters.com/mt/archives/2013/02/how-do-users-really-hold-mobile-devices.php
12.http://www.wikipedia.org/
13.https://medium.com/@danielwi/view-mode-approach-to-responsive-web-design-914c7d3795fb
14.https://medium.com/@danielwi/view-mode-approach-to-responsive-web-design-914c7d3795fb
15.http://www.cancer.dk
16.“Conversions@Google 2014”, Luke Wroblewski, https://www.youtube.com/watch?v=Y-FMTPsgy_Y
17.http://www.crazyegg.com
18.http://www.conversion-rate-experts.com/crazy-egg-case-study/
19.http://blog.chartbeat.com/2013/08/12/scroll-behavior-across-the-web/
20.http://choiseul.info/
21.http://kremlin.ru/
22.http://codepen.io/anon/pen/WbzbbQ
23.http://www.swissair.com/
24.http://gergeo.se/RWD-Table-Patterns/
25.https://github.com/filamentgroup/tablesaw
26.https://github.com/filamentgroup/tablesaw
27.https://gionkunz.github.io/chartist-js/
28.http://www.informed-design.com/responsive/chart/
29.http://alistapart.com/article/creating-intrinsic-ratios-for-video
30.http://daverupert.com/2012/04/uncle-daves-ol-padded-box/
31.http://codepen.io/bradfrost/pen/vwInb
32.http://travois.com/projects/
33.http://bradfrost.com/blog/post/adaptive-maps/
34.http://www.jordanm.co.uk/post/26207088124/pattern-translations
35.http://www.lukew.com/ff/entry.asp?1390
36.http://bradfrost.com/blog/post/conditional-lightbox/
37.http://www.bigfootjs.com/
38.http://www.energymadeclear.com/
39.https://www.soundslice.com/
40.http://support-sapporo.or.jp
41.https://typekit.com/
42.http://davidecalignano.it/css-trick-to-reproduce-glimpse-on-native-scroll/
43.http://www.swissair.com/
44.http://www.typeform.com/
45.https://www.pittsburghfoodbank.org/donate/feedthekids/
46.http://mds.is/float-label-pattern/

[image: Chapter Illustration]

Content Choreography In RWD
By Eileen WebbLet’s start our journey into the world of structured content with a story about one of my clients, an international non-profit organization with a rich history and an enthusiastic staff. One fine day many years ago, their first website launched: it included a page for each of their office locations, a section describing their programs and services, staff biographies, and a brief page describing their history. The first version of the website was spearheaded by their program director, and owned and maintained by people on her team.
Over time, the organization grew: a new office in Geneva, expanded services in Chicago, a summer internship program. Each new program, event or news item meant adding pages to their website literally creating additional HTML files. Control of the website bounced through a few departments programs, marketing, outreach and each group managed the files and the content slightly differently.
Enter mobile devices. This organization’s users lived all over the world, and more and more of them were accessing the site on their phones or tablets. The pinch-and-zoom experience was crappy, and they came to us looking for a redesign that would make the site work across all screen sizes. They’d heard and seen how responsive web design (RWD) worked, and they were convinced that it was the solution to all their problems.
Which: yes! RWD was a great match for their needs. But adjusting the font size and column ratios across screen sizes would not actually make their users happy, because the real problem was not the early-2000’s design aesthetic and inflexible images. The real problem was that the content sucked.
Content created by one department was never updated by the next. Services got renamed in the navigation but were still referenced by the old name in the body text. Important information was buried in the murky depths of flowery prose. Sidebars pointed to “Related Events” that happened in 2011. Important content like program eligibility requirements was duplicated in many places across the site, and the pages had diverged and showed inconsistent and contradictory policies. The site wasn’t helping users get the information they needed, or complete the tasks they needed to get done to do their jobs.
No one was interested in a major overhaul of just the content, but because they wanted a new look-and-feel we were able to use the responsive redesign as a scapegoat for changing their content architecture and processes. One of the major tasks was to figure out how to reduce the number of places errors could be introduced by breaking the content down into a system of reusable parts.
Content in a Responsive Design
In this chapter, we’ll talk about why I bother to structure content about what structured content lets me do on a site and then we’ll go over how to take current unstructured content and whip it into shape.
We love responsive design as a great way to approach building sites that work across all devices. As a content strategist, I love RWD because it makes it very hard to ignore glaring content problems.
At its smallest sizes, RWD isn’t, generally, a festival of sound and light. When you strip the pomp and circumstance out of a beautiful desktop view, you’re usually left with a very straightforward, single-column, small-screen design that puts the content front and center. If that content is poorly organized, badly written, or just generally crappy, it’s very hard to ignore.
If, like me, your background is in design or development, adding in a whole new phase to your projects to focus on content may seem daunting. But the alternative, which you may have already encountered, is to hope that the content fixes itself, then launch a site that doesn’t help the user despite its clever use of media queries.
What Is Structured Content?
Structured content is, at its core, pretty simple: instead of storing content in a few all-encompassing content management system (CMS) fields, information is broken down into its component pieces and stored in a set of individual fields. Karen McGrane has enriched all our conversations about structured content by using the terms “blobs” and “chunks”1: a blob is a single gelatinous field containing many different kinds of information; whereas chunks are individual, well-defined snippets of content, with clear edges and a crispy bite.
For example, here’s a type of content that’s common to many websites: the event listing. In most CMSs, the default entry type includes a title field and a body field. The body field is a blob, holding all of the information about your event.
[image: Storing all the content inside a single field is typical, but it makes it hard to reuse information across the site.]
Storing all the content inside a single field is typical, but it makes it hard to reuse information across the site.
There are a few issues that often come along with this kind of setup:
•If the site has a homepage block like “Upcoming Events”, it needs to be manually updated each time a new event is added. It’s an extra step (and hassle) for the site administrator, and the block will quickly get out of date as events pass and need to be removed from the list.
•A main page like an event calendar may want to display teasers (rather than full entries) for the entries. Truncating a full body field is a recipe for confusion and poor user experience.
[image: Teasers created through truncation are often confusing and missing key information.]
Teasers created through truncation are often confusing and missing key information.
•If the site has multiple authors creating content, it’s very hard to keep a complex body field consistent. Some people will bold the time, others will use an <h3> because they happen to look identical. Sometimes the event will include a location as the second line, and other times that information won’t be included at all. An inconsistent body field is hard to style, hard to manage, and hard for a user to read.
Rather than keeping all of the information in a single field, structuring the content divides the data components like event date, location, and teaser description into individual fields.
[image: Splitting the pieces out into chunks gives me flexibility and control, setting up the site for a more consistent and customizable user experience.]
Splitting the pieces out into chunks gives me flexibility and control, setting up the site for a more consistent and customizable user experience.
What Structured Content Lets You Do
Breaking content down and storing it as individual components improves my ability to direct content quality, and it also allows me to do two things that are very relevant to RWD: I can recombine content in new forms for different uses, and I can get really picky about how the layout changes across screen sizes.
Consistent Content
When all the content lives in a single field, there’s really no way to make sure any given entry contains all the pieces of information a user needs. Especially with more complex content types, there may be 15 or 20 pieces of data that need to be included in each entry think, for example, of all of the various pieces of a product specification. From a data standpoint, it’s very easy for a site author to leave out a few bits of information.
From a quality standpoint, if an author is paying attention to checking off all the data points on a list, asking them to make sure they’re also properly representing the organization’s voice and tone, communicating key messages to a niche audience, and including at least one reference to corporate environmental initiatives it may just be a bit too much to do consistently well on each entry.
Some of those tasks listed above speaking to a specific audience, or adhering to a corporate voice can only be done by humans. To give those humans the space to do their jobs well, structured content lets us offload keeping track of the data-driven tasks (lists of specification numbers, or relationships to related content) to the computer. Computers love keeping track of things!
Where we used to ask authors to start on a blank page, now we’re asking them to start by filling out a form. Important data fields are required, so there’s no way they can get lost in the shuffle. Each field can have its own input validation for format or length. Detailed sets of information are represented in field groups, so authors don’t have to remember how everything interrelates. The labels and help text for each field remind authors what the field is for, what needs to be communicated, and how they can create content that will help the user get their task done.
[image: Filling out a simple form is much easier than remembering how to format elaborate content in a single WYSIWYG field.]
Filling out a simple form is much easier than remembering how to format elaborate content in a single WYSIWYG field.
Different Data in Different Places
Once my content is stored as granular chunks instead of a single blob, I can start recombining the pieces to meet all my different data needs. I recently worked on a site that included event listings, and each entry was displayed in three places:
•Event detail page, including the title, full paragraph description, agenda, and location information.
•Upcoming events sidebar, with the title, date and time, and single-sentence description.
•Event calendar, showing just the title and time.
Each event had only one entry in the CMS, and each different display pulled only the relevant information from the database.
I can display different data for different screen sizes as well. On a large screen, I may want to show an event location as a full address with an embedded map. On a smaller screen, I might show a simpler linked version of the address with no map. While it’s important to give users on all screen sizes the same core content (because we can no longer guess context based on device2), it’s helpful to be able to tweak the formatting and presentation across different widths.
[image: When space is at a premium, it can be helpful to pare down to the simplest representation of the information needed.]
[image: When space is at a premium, it can be helpful to pare down to the simplest representation of the information needed.]
When space is at a premium, it can be helpful to pare down to the simplest representation of the information needed.
Screen size is of course not the only variable that I want to use to control the display of content. For example, my favorite conference websites adjust the information hierarchy during the event itself, emphasizing which room each presentation is in and downplaying previous days’ schedules. Well-structured content allows me to do things like automatically adding a starting time data- attribute for each talk’s <div>. A bit of JavaScript to attach time-based CSS classes at page load, and voil! Clever, dynamic event listings that change styling as the day progresses.
Structured content also sets up the information for reuse in other channels. If we’re creating a 100-character version of the headline for display on a small screen, that same headline could be used on Twitter, or pulled to a native app, or displayed on a smartwatch or other micro-display. Breaking content down into facets creates an ecosystem of data that can be used and reused in a wide variety of formats.
A Nitpicker’s Paradise
Not everyone relishes the work that goes into making a pixel-perfect design. And it’s true that, for the sake of their sanity, a fussy designer is generally well served by embracing a design system philosophy3 on RWD sites. But sometimes a project calls for a bit of obsessive pixel-pushing, especially at the awkward middle breakpoints (I’m looking at you, Nexus 7!), and structured content is what makes that detailed work possible.
Let’s look at an example:
[image: Single line date]
[image: Single line date]
On small screens, the date of each event is shown as a single line just above the title. Once the screen size is large enough, I want the date to display to the side in a stylized tile.
Markup-wise, this isn’t a huge challenge: the entire date is in a <div>, and each unit has its own span with a class name of “day”, “month”, or “year”. At larger breakpoints, CSS kicks in that shifts the date elements to stack on top of one another and floats the whole <div> left.
<div class="event-date">
 13
 Jun
 2015
</div>
In order to style the date properly, I need the markup in every single entry to contain those exact elements, in that order. But chances are that the site admins and authors aren’t comfortable with HTML. If I ask them to use that chunk of code at the top of each block of content, it won’t be long before I end up with a class of “yera”, a <, and the dreaded </div></div>. We shouldn’t require non-developers to work in HTML. It isn’t kind.
Instead, I break out the event date to its own field. There are a few common interface choices for a date widget (a <select> list for each element, a JavaScript mask, pop-up calendar, and so on), and all of them are easier for an author than writing markup.
[image: Form widget to enter data]
[image: Form widget to enter data]
[image: Form widget to enter data]
Simple form widgets let authors enter dates consistently without having to remember how to format the information in HTML.
The site author fills out the date field in a human-readable format, and it’s stored in the database in a machine-readable format (UNIX time, usually). When it’s time for the date to be pulled out for display on the front-end, the CMS feeds it through a template that formats and marks up the data exactly in the way that I want. It’s the same code every time, for every date, of every entry.
It’s not hard to see how consistency in markup is one of the keys to the long-term viability of a responsive design. While there are a few different ways to achieve this consistency (individual fields, custom WYSIWYG buttons for marking up long-form content, and so on), the first step to standardizing markup is understanding the structure of the content itself. It’s time to build a content model.
How To Build A Content Model
A content model is an organizational plan for all of the different content in a project. It covers both the high-level content types (like events and products) and the individual fields and data attributes (like event date, location, and teaser sentence) that make up each type. The first step to building a model is, not surprisingly, understanding my content. I like to start by performing a structural content audit.
If you know the term “content audit4,” you’re probably familiar with an editorial audit. In the editorial audit, each page or piece of content is reviewed and graded against a set of qualitative criteria, like readability, intended audience, or adherence to an existing style guide. A structural audit, in contrast, is more concerned with uncovering the patterns and relationships across all the content. Once I understand the content types and how they relate to one another, I can start to tease out the facets and individual fields for my content model.
Starting the Structural Audit
When I’m faced with a huge existing site or a ton of legacy content, where do I start the audit? My take is: wherever I want. Just dive in.
(Except: don’t start with the homepage. It’s often a mess, and rarely has sensible ties to the rest of the site content or reuse patterns. You know what I’m talking about: the homepage is a political playground, not a structural one.)
I usually start with some of the minor content, like “Executive Bios” or “Company History”. As I read through 10-15 entries or pages, I’ll begin to spot patterns: these executive biographies always have a headshot, name, job title, and biography text. I may notice further nuance in some areas, like that the first paragraphs of biography text are professional background, and the last is about family and personal life.
[image: Finding the patterns in existing content is the first step towards building a model.]
Finding the patterns in existing content is the first step towards building a model.
More importantly, I’ll find places where a pattern like “first paragraph: work history; second paragraph: personal history” isn’t carried through, and I’ll see how (or if) that inconsistency affects the user experience. I start having discussions with my stakeholders about where the new model should enforce guidelines (through required fields, help text, and so on), and what parts should be left to author discretion.
An Aside About Editorial Content Judgment
I don’t specialize in editorial strategy; my background isn’t in writing or editing. But even the structural audit includes some editorial judgment because I can’t look at hundreds (or even dozens) of pages without starting to recognize poor formatting, bloated text, and lack of user guidance. As I’m working through the content, I make notes about places on the site that could use editorial attention, especially sections that need design and development help (like “More prominent calls to action!”) to be effective. This won’t be as comprehensive as a full editorial audit, of course, but it’s a place to start. Content strategy is about progress, not perfection.
Identifying Facets Within a Content Type
How do I know what parts of the content should be separated into their own fields? For each chunk of information, whether it’s something distinct like “Job Title” or a little fuzzier like “second paragraph of the bio, holding personal history”, I ask the following questions:
Is this content likely to have its own style?Audits usually happen long before design, so you won’t know this for certain yet. But I’ll often have a sense: a field like “Job Title” is usually displayed separately from the person’s name; or I may already know that the event location address is going to be displayed in a <div> that’s visually distinct from the main event description. Any content I think will have special display or styling requirements is a good candidate for having its own field in the content model.
Does this content have special editorial requirements? If a piece of information needs to be limited to 250 characters or a chunk of content needs to include very specific references to corporate initiatives or internal programs, it may warrant its own field. In most CMSs, each field can have its own set of contextual help text and authoring guidelines; being able to break out content with complex or specific editorial needs allows me to customize those guidelines to help authors do their jobs well.
Is there filtering or sorting functionality based on this information? Computers are great at rearranging and customizing content, as long as we give them the tools to do it. Users may want to filter the event calendar to show only family-friendly events, or sort a list of documents to see the newest entries at the top. Any piece of data that may be useful for grouping or organizing content should go in its own field.
Will this content be displayed differently in different places on the site, or across varying screen sizes? A product may show a one-sentence description on the homepage and a full description on the product detail page. An artist’s portfolio might show an expansive photograph on a large screen, and a zoomed-in design detail on a small screen. Many responsive sites adjust content and imagery to enhance the user experience across different screen sizes; breaking information into individual fields makes this kind of manipulation possible.
Are there other places (like an RSS feed, API, or native app) that will reuse this content? If my plans involve reusing content across different channels, what content variations do I need to support that work? Entries that will be promoted on Twitter need a sub-140-character description. Content that matches one of the special OpenGraph types5 should include all the fields necessary to take advantage of Google and Facebook’s use of that framework. When I have other plans for the content as complex as a native app, or as simple as “internal-use-only data that we don’t want to lose track of” including fields for that information in my content model will make maintaining a consistent record much more feasible.
Once I have the skeleton of a model for a simple, minor content types which at this point is usually just a scrawled list of content sections on a notepad I scan another 2030 entries to see if any of them contain information that falls outside the chunks in my proto-model. I can adjust the model to hold the new information, and also go back to my stakeholders and discuss the outliers. Sometimes outlying content (helloooooo “Photo highlights of the 2011 company golf tournament”) won’t make the move to the new site and so doesn’t need to fit in the model.
Bigger, Messier Content Types
Finite content, like biographies and calendar events, is relatively easy to model. Those types tend to hold discrete chunks of information, and more importantly, people understand them. An executive biography is different from an event listing, and even without doing a full audit, many people could make a passable stab at modeling the information they contain. Sadly, not all content is this tidy.
The content that describes an organization’s core products and services can be much more difficult to wrangle because it’s unique to the business and usually contains data and information that falls outside of my early simple models.
The most important part of modeling bigger content types is figuring out ways to group the data. Our product content might be expansive and messy, but a bunch of those fields are product specifications and can be gathered into a single section. As I list all the pieces of data that make up the content type, I start to see smaller patterns emerge that help me make sense of the rest.
Field Reuse and Relationships
I also keep an eye out for fields and content that are shared across content types and relationships between types.
Fields that are reused across types are the simplest to spot: the biographies for authors, artists, and staff all include headshots and URL fields. Most CMSs let me reuse the same field in different content types; I can style the field once and have that style applied everywhere that field is shown.
When the reused information is broader than a single field, that’s a place where a content relationship can be helpful. I have clients with multiple offices, and different services are available at each location I want site users to be able to look at the detail page for a single service and see all the locations where it’s offered. Rather than include a text field where an author would list the offices, the content model calls for a relationship: the CMS will present a GUI (commonly an autocomplete text field, select list, or checkboxes) that lets the author choose the locations from a list. Content relationships allow the front-end to display anything from a link to the location detail page, to a teaser of the location, to an address that will open in a native maps app on phones that support it. All without the author having to know how (or remember) to create that code, because I’ve set the content models up to take advantage of the power of relationships.
Thinking Beyond Existing Content
Let’s step back from modeling for a minute. I’m going to go out on a limb and guess that you’re working on a site project because somewhere, someone is unhappy with something. Maybe the site isn’t converting casual browsers into buyers, or your organization is launching an initiative and can’t figure out how to integrate the new content, or you’ve been hearing from users that they’re having a hard time finding the information they need on your site. It’s rare for an RWD project to come from a place where everything is perfect except for the small-screen experience.
At the beginning of the project, I always have meetings and discussions with a bunch of stakeholders, and start to get a sense of or explicit directions about the kinds of improvements people want to see on the site. I have to cast my memory back, review my notes, and start to look at the existing content with an eye for identifying gaps.
Data-Driven Gaps
The gaps may be purely data-driven: if I heard from the customer service team that a lot of people call asking for the dimensions of our products, then the new version of the site should display those dimensions. If the company wants to show a more human side to their work, the new site could integrate testimonials or client stories.
I worked with a grant-funded organization that wanted to make it clear to their funders how the grants had a direct impact in the community. But there was no connection between their day-to-day program content and the foundations listed on their funding partners page. In identifying that gap, we were able to create an explicit content relationship on the new site to tie the funders and their work more closely together.
[image: Adding the funder relationship to the content model was a small structural change that had a big impact on the way the organization presented its work.]
Adding the funder relationship to the content model was a small structural change that had a big impact on the way the organization presented its work.
Feature-Driven Gaps
New site features often carry their own content needs, and it’s important to identify them as early as possible. As I’m sketching out wireframes or user stories to plan the development schedule, I look for the kinds of content that the new features make use of, and see if that information is already represented in our content models.
For example, the stakeholders want the new site’s event calendar to display the instructor’s biography on every corporate training entry. I can add “Instructor Biography” as a new content type in our model, piggybacking on the fields and structure of the “Executive Biography” content. But the current site doesn’t have instructor biographies, so who is going to write those? Will we hire copywriters, or ask people to write their own? If the listings need to include a headshot image, will a photographer be hired to take professional photos?
Sometimes the answers are simple: “We already wrote those biographies for the annual report!”; and sometimes they affect my work directly: “We don’t have budget for a photographer, so design the bios without them.” If you’re a designer or developer, it’s probably not your responsibility to figure out the answers to these questions about content gaps. But it is part of your job to raise the issues and get the team talking about how to address these content deficits long before launch day.
Giving Up: When Everything Is Just A Big Mess Forever
Not all content is precise and patterned. There are some types of content that defy organization: blobs that don’t want to be chunked, or unique information that doesn’t have a repeating pattern because it’s the only one of its kind.
At some point in every project, I have to remind myself: some information belongs in blobs. Data (numbers, measurements, and taxonomy) lends itself to patterns and chunking; but content (essays, descriptions, and stories) is inherently blobby. Those kinds of information are already as faceted as they’re going to get. When I can’t break a piece any smaller, the frustration usually leads to a realization that the information should stay as a blob. It’s not a failure of a content model to include a large WYSIWYG <textarea> for authors to fill in with freeform content.
When I reach that point and throw up my arms and yell, “FINE. BE THAT WAY!”, I circle back to reuse. What else do we need to do with this content, that having it as a blob prevents us from doing? Content models only exist to make the site better for my authors and my customers they don’t have to fit other people’s use cases. Often all I really need from a piece of content is a small summary I can use as a teaser on other pages, or a taxonomy field to create a relationship to other sections of the site. The content model may end up being only a title, teaser, and body field. That’s fine, as long it serves the needs of my site.
My approach is similar when I’m dealing with one-off content, which has no repeating patterns because it’s the only instance of that information. The homepage of most sites is a perfect example from a pure content model perspective, it doesn’t make sense to build a model that will only have one entry. A single page of unique content could be hand-coded, and that’s a good solution if the budget is tight and the information doesn’t change very often.
But I’m not building models as an intellectual exercise, I’m doing it to support this organization and its responsive site experience. We’ve already talked about the cruelty of making non-coders understand HTML to make simple text updates to their content, and on the homepage the stakes are high unclosed <div>s and wrongly sized images will break the entire layout, and I will get panicked calls from executives late at night.
If authors are going to be updating the homepage content, I’ll often create a “homepage” content type in the CMS, breaking down that single page into individual fields and sections to make editing the content a safe and painless experience. Sure, there’s only ever going to be a single homepage, and none of that content is being reused in other channels, but guess what? There is no content model police. I will support my site experience and my authors over the theoretical ideals of what content models are for any day.
Documenting And Sharing The Content Model
Content models are only useful when the whole team understands them, so it’s important to get the model out of my head and onto paper or screen in a shareable format. And when I say “the whole team,” I really mean it. We tend to think of the customer as the end user and ignore the fact that the site administrators and authors are on the site more often than most users. Be persistent annoying, even about reviewing content models with all levels of the web team. If content entry is mostly handled by Alice, the summer intern, walk through the models with Alice, the summer intern. She’s deep in the content every day and has insights that others do not have.
I often end up creating a few different views (a spreadsheet, diagrams, low-fidelity wireframes, and so on) of the same model in order to give a more complete picture, and to address all my team members’ needs. I’m generally building a model for three different audiences: stakeholders, developers, and authors.
Stakeholders
Stakeholders want to see the big picture. They want to understand what the overall structure is, and they’re very interested in what that structure allows them to do. They are generally less interested in the minutiae of implementation and don’t care if a field is represented as a boolean in the database. For stakeholders and executives, diagrams and schematics even a very sketchy wireframe showing a user journey are helpful.
[image: A graphic representation of the fields in the model can help people understand the overall shape of the content without diving into minutiae.]
A graphic representation of the fields in the model can help people understand the overall shape of the content without diving into minutiae.
Developers
Developers appreciate the big picture, because who doesn’t like context? But they need details about how to actually build the models in the CMS. They care about whether a field should be a text <input> field or a <textarea>, whether there’s a character limit, if the field is required, and if it will need to accept HTML. The core of most content models, and the information most useful for developers, lives in a spreadsheet.
[image: A spreadsheet is the perfect place to keep track of all the disparate pieces of a content model.]
A spreadsheet is the perfect place to keep track of all the disparate pieces of a content model.
There’s no canonical spreadsheet: every project has different needs. My basic content model spreadsheets contain the following columns:
•Section: groupings of fields, usually by content area like “event information” or “location data”.
•Field: the name of each piece of data in the model.
•Format: the type of content stored in the field, like “image”, “rich text”, or “boolean.”
•Maximum length: this is often used in RWD, where you might have two or three length variations of a single piece of content for use across different screen sizes.
•Number of instances: the upper limit on the number of instances of that field in each entry. For example, an event listing can only have a single location, but may have up to four instructors. This is a good time to learn how to type the ∞ symbol.
•Required: whether or not the field is required for each entry.
•Contents: a brief description of the contents of the field, like “Directions to the location, including information about where to park.”
•Notes: any other information about the field, including thoughts about implementation, issues to discuss with stakeholders, or an explanation of what this field enables from the user experience standpoint. It wouldn’t be a spreadsheet without a catch-all column.
My spreadsheets also include other columns to hold whatever information this particular project needs. Such as:
•Source
If we’re pulling content together across systems, through APIs, or from other media like print publications, I make a note of where the information in each field will come from.
•Example content
Especially helpful if the team is having a hard time wrapping their heads around how the current content will fit into the new model. When the model has variations on a single piece of information (like a short and long image caption that will be used on different screen sizes), having examples of both helps authors better understand the nuance and difference between the variations.
•Do not include
It can be helpful to clarify what doesn’t belong in each field. “Do not include the address in this description”, or “The biography should not repeat the job title (because it lives in its own field).”
Authors
Authors need some of the details of the spreadsheet, like character limits and required fields, but they don’t need the technical implementation data. Authors also need editorial guidelines, which help them use consistent messaging and style across the site. These guidelines are traditionally captured in a content template6.
The content template reminds the author who the intended audience is, the primary message that the copy needs to convey, and the purpose of the content. The content template can also include much more detailed information about what belongs in larger rich-text fields, including a paragraph-level outline, reminders of words to include (or avoid), and tips on language and style choices.
Traditionally the content template is a separate PDF, but my experience is that people don’t usually remember to open those kinds of files in their daily workflow. Instead, I like to build those content guidelines directly into the CMS interface. Most CMSs allow you to customize field labels and help text for each content type. By including audience needs, voice and style reminders, and technical content guidelines directly in the CMS editing form, you’re providing information to your authors exactly when and where they need it.
[image: Remember our example from earlier? It’s much easier for an author to create consistent content when all the guidelines are right there in the admin interface.]
Remember our example from earlier? It’s much easier for an author to create consistent content when all the guidelines are right there in the admin interface.
Good labels and guidelines:
•provide context, explaining what a field is for and how it will be used;
•are specific, encouraging accuracy and uniformity while eliminating guesswork;
•are positive and helpful, rather than hostile and prohibitive.
Field names should be specific and descriptive (think “Artist Name” and “Biography Text” instead of “Title” and “Body”). Help text should instruct the author about what does and doesn’t belong in the field, and include guidance about how the field is being used and where it will be displayed so they understand what information it needs to contain.
If you’re eager to customize your CMS (and who isn’t!), I’ve written a whole article about improving field names and help text7 over at A List Apart.
Working With The Model In A CMS
All of this content modeling is built on the assumption that you’ll be creating the site inside a CMS. Structured content can only be used to its fullest when the data and information are kept separate from the presentation layer, and that means you need a system to manage the intersection of those layers. If you’ve never used a CMS before, welcome! They are a rich source of joy and frustration.
Choosing a CMS
What do I look for in a CMS? (There are of course many other considerations to choosing a CMS technical, ongoing support needs, cost but I’m only going to address the content issues.)
•Obviously, the CMS needs to support creating multiple content types and lots of different kinds of fields. These capabilities should be part of its core code, but a popular and well-supported add-on module is alright, too.
•It should allow me to divide and recombine all the fields in my content types for a variety of display uses, and changing the configuration for one type of display shouldn’t break any of the others.
•The system should have a robust set of tools for customizing the authoring experience’s layout and help text because without that I might as well build flat HTML pages again.
•If my models or authoring workflow rely heavily on a particular type of field or functionality, I make sure the CMS has strong support for it. For example, some systems make it very easy to crop a photograph to preset dimensions from within the editing screen, whereas others require the author to upload an already cropped image. I put a high priority on choosing a CMS that makes the author jump through as few hoops as possible.
You may not have the luxury or burden of CMS choice if you work at an agency that specializes in ExpressionEngine, or you bill yourself as a Drupal developer, or a WordPress guru*, the CMS decision has already been made. That’s fine, too. You can skip right to the middle and start figuring out how to make your CMS work best for you.
Please don’t.
I try to build CMS-agnostic content models, to create a picture of the ideal set of fields and relationships, without any restrictions, that serve the content best. When the time comes to compromise as I map the models to a real system, having a strong sense of the ideal scenario helps me find solutions that preserve the original intent as much as possible.
Getting Content Models into the CMS
The spreadsheet representation of the content model is built to make implementation easy. I work through it row by row, creating and customizing content types and fields until the whole model is represented in the system.
One of the most common snags I run across during implementation is when there are two nearly (or completely) identical content types. For example: “Artist Biography” and “Executive Biography”, or “Training Program” and “Ongoing Education”. Should I combine them, or create two separate instances? My inclination is always to combine into a single content type: perhaps “Biography” with an additional “Type” field (with the choices “Artist” and “Executive”) to distinguish between the two uses. The urge is a good one, based on my desire to reuse code, simplify styling, and make the site as lean as possible. It’s not, however, always the right choice.
“Training Program” and “Ongoing Education” may be identical content types with the exact same set of fields. But if they serve entirely different business purposes say one is aimed at novice laypeople, the other at existing experts combining them may not make sense. Are the same people in charge of both kinds of entries? If separate departments handle the two types of information, having them both use the same content type may be confusing, and may hinder my ability to customize and tweak the model and forms for each group’s needs. Even if all the content entry will by handled by a single person, does that person understand these types of content to be completely different? If she says “Oh yes, I could see how those are just two versions of the same thing!”, then I’ll combine the content types. But if she’s stuck on them being entirely unique, I either need to present a compelling reason to combine them or be content with letting the two content types live as parallel structures.
There’s a lot to be said for stakeholder education and CMS training, but it’s also important that the models work with the author’s understanding of the information. A model that a client is constantly fighting against is no good model at all.
Ongoing Content Maintenance
When I’m building out a content model, it’s important to start conversations about governance and ongoing maintenance for each content type and section. It’s tempting to ignore these questions because they’re not directly related to building this fancy new RWD site, but unless I want to come back in a year and see the blog with still just that single “Welcome to our new site!” post, I have to grit my teeth and dig in.
•Owner
Who’s in charge of this content? This may be a specific person, or a position, or an entire department. Every type of content needs an owner who will take responsibility for its quality and accuracy.
•Approval process
Does this information need to go past the legal department before it goes live? When marketing writes a compelling sales pitch, should someone in development read through it to make sure it accurately represents the product? It’s important to spell out a clear path from creation to publishing that everyone understands and agrees with.
•Review schedule
When will this content be reviewed, and by whom? Monthly, quarterly, annually? If revisions are necessary, who makes them? Planning for regular reviews of the site content is crucial to its ongoing quality and usefulness.
A new site often leads to changing roles and responsibilities around content. As governance and maintenance decisions get made, it’s really helpful for the team to start embodying their new roles writing blog posts on a regular schedule, having monthly meetings to review social media campaigns, editing images for the photo gallery even though the new site isn’t ready yet. That way, new features will launch with a few months’ worth of real content in them, and process issues can get ironed out before they’re critical. Site launch day should never be the first day someone has to explore and learn their new tasks in the CMS.
Embracing Your Inner Content Strategist
You might notice that many of our questions and discussions are starting to roam outside the realm of development and implementation details. This is the nature of content strategy we like to poke our noses in a lot of people’s business.
Being a content strategist doesn’t require you to stop being a designer, or a developer, or a project manager, or whatever your role is today. I truly believe that bad content makes it hard for you to do your job well, so when you’re working solo or on a project that doesn’t have a dedicated content strategist, block off some time early in the schedule to understand the current content situation. A full and robust content strategy includes a lot of information beyond a content model: voice and tone guidelines, style guides, editorial calendars, message architecture, and more. Not every project warrants all of those pieces, but I can’t think of a responsive site I’ve seen that didn’t benefit from structured content. The time spent figuring out underlying patterns, finding gaps and shortfalls, and planning for future maintenance will pay itself back before the site even launches.

About the Author
[image: Eileen Webb]
Eileen Webb is a content strategist and co-founder of webmeadow, a firm that helps progressive organizations develop content and technology strategies to make the world a better place. She is also a content strategy workshop facilitator. Her background is in server-side coding and being that odd person who translates between the marketing and development teams. Her Twitter feed (@webmeadow) is equal parts content strategy and pictures of poultry.
About the Reviewer
[image: Lisa Maria Martin]
Lisa Maria Martin is a writer, editor, speaker, and independent consultant based in Boston, MA. She practices content-driven information architecture, helping organizations plan and structure their web content logically and strategically. Lisa Maria also facilitates workshops at www.content-workshops.com, is the issues editor at A List Apart, and writes infrequently at www.thefutureislikepie.com.

—
1.http://karenmcgrane.com/2012/09/04/adapting-ourselves-to-adaptive-content-video-slides-and-transcript-oh-my/
2.http://alistapart.com/column/windows-on-the-web
3.http://24ways.org/2012/design-systems/
4.http://www.hannonhill.com/news/blog/2012/why-and-how-to-do-a-content-audit.html
5.http://ogp.me
6.http://alistapart.com/article/content-templates-to-the-rescue
7.http://alistapart.com/article/training-the-cms

[image: Chapter Illustration]

Mastering SVG For Responsive Web Design
By Sara SoueidanYou must have come across scalable vector graphics (SVG) in your responsive projects recently. When it comes to resolution-independent assets, SVG is one of the main contenders that we, designers and developers alike, apply in our work. However, SVG isn’t just an image file that scales up and down in a responsive context. With SVG, you can do much more, applying smart and nifty techniques to create both scalable and delightful experiences.
In this chapter, we’re going to go over ways to use SVG in a responsive web design workflow. More specifically, we’ll cover a workflow process from SVG creation, to exporting and optimizing the SVG for the web. Then we’ll look at how we can embed the SVG using the different techniques available. We will explore different techniques for creating SVG sprites and the different ways to provide fallback, consider the performance of some of these techniques, and discover the tools that help us automate the previous tasks. We won’t forget about accessibility and providing alternative content for people with disabilities using SVG’s accessibility features. And finally we’ll go over a few clever techniques using SVG as a tool for delivering better raster graphics, that can take your SVG knowledge to the next level.
Without further ado, let’s get started.
What Is SVG?
SVG is an XML-based, two-dimensional image format with support for interactivity and animation. But don’t let the XML part put you off — SVG is a markup language similar to HTML but is designed for another purpose: rendering shapes and images. These shapes and images are accessible, and can be animated and interactive. This provides us with finer control over the elements making up an SVG image and allows us to group elements, transform them, animate them and interact with them using CSS and JavaScript.
SVG is not a new format. As a matter of fact, the World Wide Web Consortium (W3C) started work on it as far back as 1999. But the rebirth of SVG is a consequence of the rise of mobile devices and the introduction of different screen densities, which required us to look for an image format that would look crisp in all viewing contexts. SVG offers a truly resolution-independent technology for presenting graphics on the web — create the file once and use it anywhere, at any scale and resolution.
Because SVG is vector-based, it is worth making a short detour to look at some of the differences between vector-based and pixel-based graphics.
Vector vs. Raster
Today, the majority of images on the web are pixel-based raster graphics, also known as bitmaps.
Bitmaps are images made up of pixels in a grid that contain the color information for the image rendered on the screen. They come in different formats, of which the most popular and commonly used on the web are PNG, JPEG, and GIF. Bitmap images have advantages, such as their ability to recreate photographic images with high fidelity, but they suffer from a number of limitations.
Obviously, the number one limitation of raster graphics is that they are not scalable — they look blurry when scaled up beyond a certain level. When a bitmap image is zoomed in to, the software or browser needs to create new pixels. It does that by estimating the color values of the new pixels based on the surrounding pixels. This approximation of color values for the new pixels leads to the blurriness of a zoomed image.
[image: A logo in PNG format zoomed in several times looks blurry, and the text content can become illegible.]
A logo in PNG format zoomed in several times looks blurry, and the text content can become illegible. (Logo designed by Freepik.com)
Bitmap formats also tend to be bulky, limited to a single — often low — resolution and consume large amounts of bandwidth on the web.
“Images have been the number one obstacle to implementing truly adaptable and performant responsive pages — pages that scale both up and down, efficiently tailoring themselves to both the constraints and the affordances of the browsing context at hand.”
— “Responsive Images Done Right1,” Smashing Magazine

A lot of solutions2 were introduced, but only recently did we get a responsive images specification that provides us with a “client-side solution for delivering alternate image data based on device capabilities to prevent wasted bandwidth and optimize display for both screen and print.”(The Responsive Images Community Group (RICG)3). Briefly summarized, the responsive images specification introduces two new attributes to the element — namely sizes and srcset — and a brand new <picture> element. Yoav Weiss wrote all about the responsive images solution and how you can use it in his chapter on responsive images (see part 2 of this book).
Raster images also don’t come with the fine control over their content that SVGs offer, so there is no way to style or interact with individual elements of a bitmap image as we can with SVG. That said, bitmaps can be styled using CSS to some extent: CSS filter effects, blending modes, as well as clipping and masking operations can all be used to apply graphics effects to raster images, but the effects are always applied to the image as a whole.
Vector-based graphics are made up of shapes that constitute a set of lines, points, curves and colors that are drawn based on mathematical expressions. This allows SVGs to be scaled up and down while maintaining the spatial relationships between the shapes.
[image: The nautical logo, when used in an SVG format, scales up while preserving the crispness of the image.]
The nautical logo, when used in an SVG format, scales up while preserving the crispness of the image. (Logo designed by Freepik.com)
When using SVGs, you don’t need to know about the number of pixels on the screen. This, in turn, means that you no longer have to provide @2x, @3x and @4x versions of your graphic, because the images are completely resolution-independent. You only need to serve one asset to your users without ever needing to know what their screen or window size is. As a result, SVGs allow us to balance the quality of images with the amount of bandwidth needed to download them.
More Advantages of SVG
1. SVG Is Text-Based
Being a text-based format makes SVGs easy to edit, transform and track with version control. Their declarative nature means they often have smaller file sizes than their bitmap counterparts, especially after minification and gzipping.
Because they are XML-based, SVGs tend to contain many repeated fragments of text, which makes them a perfect candidate for lossless data compression algorithms. When an SVG image has been compressed using gzip compression, it is referred to as an SVGZ image and uses the corresponding .svgz filename extension.
The compression ratio when the SVG is gzipped can be really high, and there are examples in the SVG specification dedicated to minimizing SVG file sizes4 that show compression ratios as high as 84%. Note that if you host SVG files on a properly configured web server, it will compress files sent to the client by default, so compression of the SVG to SVGZ will then be unnecessary.
If it’s not enabled already, you can enable SVG gzipping in your .htaccess file — thereby making sure you serve SVG/SVGZ the right way — by first adding the SVG and SVGZ media types to the list of media types:
Add this to the list of media files
AddType image/svg+xml svg svgz
Next, add the gzip encoding:
<IfModule mod_mime.c>
 AddEncoding gzip svgz
</IfModule>
Note that this will not gzip your SVGs. It will only make sure the server serves pre-gzipped SVGs correctly.
Then, in order to enable dynamic gzipping, you need to specify AddOutputFilterByType DEFLATE and then add the image/svg+xml type to the list of other types you will probably have. For example, in the HTML5 Boilerplate .htaccess file, it looks like this:
<IfModule mod_filter.c>
AddOutputFilterByType DEFLATE "application/atom+xml" \
 "application/javascript" \
 "application/json" \
 […]
 "image/svg+xml" \
 …etc.
</IfModule>
HTML5 Boilerplate’s .htaccess file contains a lot of useful reusable code snippets. To check how SVG gzipping is enabled in it, refer to the compression section of the file on Github5.
2. SVGs Have Very Good Browser Support
SVG 1.1 is supported by the vast majority of web browsers on desktop and mobile devices. It works everywhere except in Internet Explorer 8 (and earlier) and Android 2.3 (and earlier). SVGs are safe to use today, and there are a lot of techniques for providing fallback for browsers that don’t support SVG (or even those that do support it but cannot display it for any reason) using simple feature detection techniques. We will cover many different ways of providing fallback later in the chapter.
Note that some SVG features (such as inline SVGs, referencing external SVGs in a <use> element, among others) can have different levels of browser support. Generally speaking, you will need to check support for any specific feature you use to make sure it works in all browsers you intend to reach.
3. SVGs Have Built-In Graphics Effects
SVG comes with the ability to apply filter effects, perform clipping and masking operations, and apply background blending modes similar to those available in Photoshop and other graphics editors — all these effects can be applied to shapes and to text alike. It also comes with other advanced features like patterns and gradients.
4. SVG Text Is Searchable and Selectable
We’ve long used images to display graphical text in techniques for image replacement6. These methods are hacks that we used to get the visual result we wanted while providing alternative text for screen readers. With SVG we no longer need them, since we can apply graphical effects to text residing in a <text> element, and that text not only remains searchable and selectable, but will also be there for screen readers as well.
Having real text inside an SVG means that…
5. SVGs Are Accessible
SVG contains a set of accessibility features including elements that describe the graphic and make it accessible to screen readers. SVG also has a very accessible SVG DOM API that allows you to create, inspect and programmatically manipulate the contents of the SVG, which makes them a great candidate for dynamic graphics, visualizations and infographics.
6. SVGs Are Styleable and Interactive
The SVG DOM API makes interactive behavior scripting using JavaScript a cinch — simply attach an event handler to an SVG node element and you’re all set. It can’t get any simpler than that.
SVGs can also be styled using CSS (or JavaScript). You can select SVG elements using SVG selectors like ID, class or type selectors (and even pseudo-selectors) and then apply styles to them — just like you would with HTML elements. SVGs also respond to CSS media queries, which makes it possible to adapt the graphic to different viewport sizes by controlling individual elements inside the graphic and styling them. What’s more interesting about SVGs is that the viewport sizes defined in the media query conditions correspond to the size of the SVG viewport, not the page viewport (unless the SVG is embedded inline in the document — more about this later in the chapter). This encapsulation of styles inside SVG means that media queries in SVG are actually element queries, which is incredibly useful for creating modular graphics we can use anywhere, knowing that they will adapt as expected no matter where they are embedded. We’ll dive into the details of making SVGs adaptive with media queries later on.
7. SVG Is Easy to Learn
As Chris Coyier says, “You can’t learn JPEG”, but you can learn SVG. If you’re a designer who works with HTML, CSS and JavaScript then you probably already know enough to understand and work with SVGs and get up and running with them fairly quickly.
Vector or Raster: Which Is the Better Format for Your Image?
It depends. Despite all of the advantages of SVG, they are not the best candidate for every kind of image.
SVG is a great way to present vector-based line drawings, but bitmaps are better suited for continuous tone images. Raster images are the preferred format when creating or working with photographs since scanned images and photos taken using a digital camera are raster images by default. If you go with a bitmap, check out Yoav’s chapter (included in part 2 of this book) to find out how to serve the image responsively using the latest standards.
SVG is the preferred format for images like user interface controls, logos, icons and vector-based illustrations. That said, it might not always be the best choice even for those kinds of images. For example, the horse illustration below is an example of a perfect SVG candidate. Despite that, the size of the SVG version of the illustration — even after optimization — is a whopping 123KB, whereas the PNG version (saved to the web from Illustrator) is around 66KB, almost half the size.
[image: A comparison of the file sizes of an image using two different formats. Horse illustration designed by Freepik.com.]
A comparison of the file sizes of an image using two different formats. Horse illustration designed by Freepik.com.
If the difference in file size is too big, and since larger file size means more bandwidth and a negative impact on performance, you may want to prioritize performance and go with the bitmap image instead. An SVG graphic may also contain graphical effects like gradients, drop shadows, glows, and similar advanced effects. But using too many effects in an illustration may increase your SVG’s size so much that a raster graphic would be preferable.
For example, the Smashing Magazine logo is a perfect candidate for the SVG format, and yet Smashing Magazine serves a PNG version. The reason is that the number of gradients and glow effects included increases the file size to more than 300KB. I personally tried optimizing the file and giving up some of the effects while preserving the overall look; the file size dropped down to around 40KB, but that was still much larger than the 5.9KB PNG file they were (and still are) serving. As a matter of fact, by applying more optimizations7, they could even drop the PNG size down to around 3.5KB, compared to which the 40KB size is gigantic.
Glows and the other complex graphical effects have also been proven to affect performance in most browsers at the moment.
Complex SVGs containing a lot of paths and details can sometimes also have large file sizes such that a PNG would be a better alternative. For example, the illustration below weighs around 266KB in PNG format, whereas the optimized SVG weighs around 390KB — this is due to the large amount of detail in the illustration.
[image: An SVG image containing a lot of details and paths. The illustration is designed by Freepik.com.]
An SVG image containing a lot of details and paths. The illustration is designed by Freepik.com.
It is worth noting at this point that, even though, a PNG file may sometimes be smaller than an SVG file, the table may sometimes be flipped if the dimensions of the image are changed. The same illustration becomes much heavier as a PNG if the dimensions are doubled before it is saved to web; in that case, the SVG format is definitely the better choice. This is particularly relevant when you need to double the size of the image for double- (or even triple-) density screens.
Generally speaking, smaller vector images like icons are best candidates for SVG. If the images contain a lot of details, that’s going to come with a cost, and a high-definition PNG could be a much better choice.
The takeaway here is that sometimes even the format that looks like the obvious go-to choice might not be — I recommend that you test and see. In most cases, you may want to provide a PNG fallback for the SVG you’re working with, so you’re most likely going to have both formats anyway. Also, keep in mind that SVGs can be gzipped, so you might want to take that into account as well before deciding. For some images, especially simple icons and illustrations, SVG is the go-to choice. But in some cases, testing is the only way to find out which format is better. Test, compare and then choose.
There are certain things that can help you generate smaller SVG file sizes. We will cover some tips and techniques in an upcoming section, but before we do, let’s do a quick overview of SVG code so that you can familiarize yourself with how exported SVG code looks. Feel free to skip to the following section if you’re already familiar with SVG code.
Quick Overview Of SVG Syntax And Code
An SVG graphic is made up of shapes that are marked up as human-readable XML tags. It’s outside the scope of this chapter to go over all of the capabilities of SVG, and the SVG universe is too big to include in just a section of a chapter. However, we’ll go over some of the basic and most important SVG elements and syntax quickly by analyzing the code for the graphic shown in below.
[image: An SVG illustration of a set of books, designed by Freepik.com.]
An SVG illustration of a set of books, designed by Freepik.com.
A snippet from the illustration’s source code contains the following code:
<?xml version="1.0" encoding="utf-8"?>
<svg version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="566px" height="451px" viewBox="0 0 566 451">
 <g id="background">
 <radialGradient id="SVGID_1_" cx="218" cy="98" r="702.7084" gradientTransform="matrix(0 1 -1 0 504 -295.9995)" gradientUnits="userSpaceOnUse">
 <stop offset="0" style="stop-color:#F1F2F2"/>
 <stop offset="1" style="stop-color:#D1D3D4"/>
 </radialGradient>
 <rect y="-296" fill="url(#SVGID_1_)" width="800" height="800"/>
 </g>
 <g id="shelf-shadow">
 <linearGradient id="SVGID_2_" gradientUnits="userSpaceOnUse" x1="255.9995" y1="179.6211" x2="255.9995" y2="465.0788">
 <stop offset="0" style="stop-color:#414042"/>
 <stop offset="1" style="stop-color:#808285;stop-opacity:0"/>
 </linearGradient>
 <polygon fill="url(#SVGID_2_)" points="311,504 512,330.1 0,329.2 0,504 "/>
 </g>
 <g id="shelf">
 <rect y="307.6" fill="#414042" width="511" height="26"/>
 <rect y="307.6" fill="#808285" width="511" height="21.5"/>
 </g>
 <g id="travel-book">
 <path fill="#FFFFFF" d="M383.6,299.6c0.1,0.5-0.1,1-0.5,1.1l-38.8,6.5c-0.4,0.1-0.7-0.3-0.8-0.8l-33.1-196.9
 c-0.1-0.5,0.1-1,0.5-1.1l38.8-6.5c0.4-0.1,0.7,0.3,0.8,0.8L383.6,299.6z"/>

 <linearGradient id="SVGID_6_" gradientUnits="userSpaceOnUse" x1="1080.5625" y1="205.374" x2="1121.2637" y2="205.374" gradientTransform="matrix(-0.9861 0.166 0.166 0.9861 1398.4752 -180.762)">
 <stop offset="0" style="stop-color:#F1F2F2"/>
 <stop offset="4.301080e-002" style="stop-color:#A7A9AC"/>
 <stop offset="0.2258" style="stop-color:#F1F2F2;stop-opacity:0"/>
 </linearGradient>
 <path opacity="0.4" fill="url(#SVGID_6_)" d="M343.4,306.4c0.1,0.5,0.5,0.9,0.8,0.8l38.8-6.5c0.4-0.1,0.6-0.5,0.5-1.1l-33.1-196.9
 c-0.1-0.5-0.5-0.9-0.8-0.8l-38.8,6.5c-0.4,0.1-0.6,0.5-0.5,1.1L343.4,306.4z"/>

 <linearGradient id="SVGID_7_" gradientUnits="userSpaceOnUse" x1="326.8428" y1="205.374" x2="367.543" y2="205.374" gradientTransform="matrix(0.9861 -0.166 0.166 0.9861 -29.5379 59.6223)">
 <stop offset="0" style="stop-color:#F1F2F2"/>
 <stop offset="4.301080e-002" style="stop-color:#A7A9AC"/>
 <stop offset="0.2258" style="stop-color:#F1F2F2;stop-opacity:0"/>
 </linearGradient>
 <path opacity="0.4" fill="url(#SVGID_7_)" d="M383.6,299.6c0.1,0.5-0.1,1-0.5,1.1l-38.8,6.5c-0.4,0.1-0.7-0.3-0.8-0.8l-33.1-196.9
 c-0.1-0.5,0.1-1,0.5-1.1l38.8-6.5c0.4-0.1,0.7,0.3,0.8,0.8L383.6,299.6z"/>

 <linearGradient id="SVGID_8_" gradientUnits="userSpaceOnUse" x1="347.1924" y1="303.7969" x2="347.1924" y2="157.856" gradientTransform="matrix(0.9861 -0.166 0.166 0.9861 -29.5379 59.6223)">
 <stop offset="0" style="stop-color:#A7A9AC"/>
 <stop offset="0.6183" style="stop-color:#F1F2F2;stop-opacity:0"/>
 </linearGradient>
 <path opacity="0.4" fill="url(#SVGID_8_)" d="M343.4,306.4c0.1,0.5,0.5,0.9,0.8,0.8l38.8-6.5c0.4-0.1,0.6-0.5,0.5-1.1l-33.1-196.9
 c-0.1-0.5-0.5-0.9-0.8-0.8l-38.8,6.5c-0.4,0.1-0.6,0.5-0.5,1.1L343.4,306.4z"/>

 <g>
 <text transform="matrix(0.166 0.9861 -0.9861 0.166 333.0215 148.8447)" fill="#1C75BC" font-family="’PTSans-Bold’" font-size="16.6835">Travel Guide Book</text>
 </g>

 <rect x="314.8" y="127.7" transform="matrix(0.9861 -0.166 0.166 0.9861 -17.7578 57.5111)" fill="#1C75BC" width="40.7" height="14.6"/>

 <rect x="339.1" y="276.2" transform="matrix(0.9861 -0.166 0.166 0.9861 -41.3653 63.5511)" fill="#1C75BC" width="40.7" height="6.1"/>
 </g>
 <g id="advertising-book">
 <!--...-->
 </g>

 <!-- ... -->
</svg>
You can see a lot of <g> elements in there: this is the SVG group element, used for logically grouping together sets of related graphical elements. The <g> element serves a similar purpose to the Group Objects function in Adobe Illustrator and other graphics tools. You can also imagine a group in SVG as being similar to a layer in a graphics editor since a layer is also a grouping of elements.
The <g> element is not the only one used for grouping elements. For the sake of brevity, I won’t mention the others because those could take up an entire chapter on their own. If you’re interested, feel free to check out my article about structuring, grouping and referencing elements in SVG8.
Groups are used to associate individual elements that make up parts of the image. For example, each book is contained within a group with an ID that defines that book. The bookshelf consists of two <rect> (rectangle) elements that are also grouped together.
Another element you see several times is the <linearGradient> element. Most SVG elements are logically named; thus, as its name shows, this element creates a linear gradient. Each linear gradient gets a unique ID. The gradients are then referenced by their IDs and used as values for the fill attribute wherever you want to use them. For instance, the shadow beneath the bookshelf is made up of a <polygon> that has a linear gradient fill color. Every linear gradient is defined by two or more <stop> elements that define the colors and where these colors start (the offset). If you’re familiar with CSS gradients, this syntax will look fairly familiar to you.
The text on the books is marked up as real text using the SVG <text> element. The text “Travel Guide Book” is rotated using the SVG transform attribute.
As you can see, SVG code is straightforward and easy to understand. If you come from an HTML background, you won’t need a lot of time to get acquainted with SVG code.
As we finish looking into the syntax, and before we get to the SVG workflow, let’s shed some light on one of the most important yet least understood attributes in SVG: the good ol’ viewBox.
Understanding the SVG Viewport and viewBox
We’ll start with a look at the difference between the viewBox attribute and the SVG viewport. The viewBox attribute also has a companion attribute, preserveAspectRatio, which controls its position and size; we’ll take a quick look at this attribute as we cover the other concepts as well.
Before we get into the three concepts, we need to define what the SVG canvas is.
The canvas is the space or area where the SVG content is drawn. Conceptually, this canvas is infinite in both dimensions. The SVG can, therefore, be of any size. However, it is rendered on the screen relative to a finite region known as the viewport. Areas of the SVG that lie beyond the boundaries of the viewport are clipped off and not visible.
The SVG viewport is defined by the SVG’s height and width. It is to the SVG what a page viewport is to a page.
Once the width and height of the outermost SVG element are set, the browser establishes an initial viewport coordinate system and an initial user coordinate system.
The initial viewport coordinate system is established on the viewport with its origin at the top-left corner of the viewport at point 0, 0; the positive x-axis points towards the right, the positive y-axis points down; and one unit in the initial coordinate system equals one pixel in the viewport.
The initial user coordinate system is established on the SVG canvas. This coordinate system is initially identical to the viewport coordinate system (see below).
[image: An SVG parrot illustration. The image shows the initial coordinate systems established on the SVG. These coordinate systems are initially identical and established by the SVG’s width and height values.]
An SVG parrot illustration. The image shows the initial coordinate systems established on the SVG. These coordinate systems are initially identical and established by the SVG’s width and height values.
Using the viewBox attribute, the initial user coordinate system (also known as the current coordinate system, or user space in use) can be modified so that it is not identical to the viewport coordinate system (see below). Then, using the preserveAspectRatio attribute, the current user coordinate system (that of the canvas) can be scaled and positioned inside the viewport.
If the aspect ratio of the viewport (viewport coordinate system) is the same as that of the viewBox (the current user coordinate system), the latter will scale to fill the viewport area. And if the aspect ratio of the viewBox is not the same of that of the viewport, the preserveAspectRatio is used to specify the position of the viewBox inside the viewport, and how it is scaled. preserveAspectRatio is made up of two parts: a keyword that specifies the position of the viewBox inside the viewport; and a keyword that specifies the scaling.
[image: An SVG parrot illustration. The blue coordinate system is the user coordinate system established on the SVG canvas when the viewBox value is no longer identical to the initial coordinate system (in gray).]
The blue coordinate system is the user coordinate system established on the SVG canvas when the viewBox value is no longer identical to the initial coordinate system (in gray). In this screenshot, the viewBox is set to "0 0 1000 500": the width and height of the user coordinate systems are 1,000 units and 500 units, respectively, with an aspect ratio that is not equal to that of the viewport. The system is positioned at the center of the viewport and scaled so that it is completely contained within it. Using the preserveAspectRatio attribute, this can be changed further.
I like to think of the viewBox as the “real” coordinate system. After all, it is the coordinate system used to draw the SVG graphics on the canvas. This coordinate system can be smaller or bigger than the viewport, and it can be fully or partially visible inside the viewport, too. At this point I tend to also forget the viewport coordinate system even exists and think of it as just a container for the viewBox.
The way the viewBox is positioned and scaled inside the viewport is similar to the way a background image is positioned and scaled inside an element’s background positioning area in CSS using background positioning and sizing properties.
To dive into the syntax and meaning of each value would require an entire chapter, so I recommend that you check out my article about this subject instead. The article is extensive, really long and contains a lot of visual explanations and examples, in addition to an interactive demo to help grasp the concept of coordinate systems in SVG. You can read the article on my blog9.
When you create an SVG in Illustrator, the dimensions of the artboard define the dimensions of the viewport, and for any exported SVG the viewBox is usually initially identical to the viewport.
Creating And Exporting SVGs For The Web In Vector Authoring Tools
There are several tools for creating and editing SVGs. The three most popular are Adobe Illustrator, Inkscape, and Sketch. Most designers’ favorite editor is Illustrator, and it’s the only one I’ve worked with, so I will refer to it throughout the chapter, but most of the concepts apply to all other vector authoring tools as well.
Picking the Right Workflow When Designing SVGs
Sometimes, vector editors simply fail at translating an illustration into clean SVG code. Sometimes, not only does the code look bad, but the visual result looks bad, too. Here are some useful tips for creating SVGs that can help you end up with cleaner code and overall better results.
Convert Text to Outlines
Converting text to outlines allows you to avoid embedding the font in the SVG. To convert your text to outlines, select your text and then go to Type Create Outlines. This will convert the text into vector shapes that make up the text shape.
Note that converting the text to outlines will make it unsearchable and unaccessible. Decide whether the text needs to be accessible before you do that. If the text is part of a graphic that is not supposed to convey a specific text message (maybe it’s part of a logo) then you can convert to outlines without having to worry about the text’s availability to assistive technologies.
It is worth mentioning at this point that even though you can convert text to outlines while you’re editing the SVG, you can skip this step altogether because you have the option to do this when you export the SVG from Illustrator — more about this in the next section.
Use Simpler Geometric Shapes
Neither convert these shapes to paths nor use paths to draw simple geometric shapes such as circles, rectangles, ellipses, and polygons, or polylines. The code required to draw geometric shapes is generally small. Drawing the same shapes using an SVG path usually requires extra path data in the code and hence increases the overall file size. The growth in file size may be insignificant, but if you have a lot of shapes and you convert all of them to paths, they add up.
Moreover, simple shapes are easier to maintain and manipulate by hand. Paths don’t come with some of the attributes simple shapes have, such as x, y, height and width. These attributes make animating simple shapes’ geometry and positions simpler; paths, on the other hand, require a more complex approach.
Simplify Paths
The simpler the paths, the less data is needed to represent them, hence less code and smaller overall file sizes. You can simplify a path by first selecting it and then going to Object Path Simplify. When you do that, and while the path simplification panel is open, you can see a preview of the path and how it is affected by the simplification process. For example, suppose we have the path shown below. You can see the number of points it consists of (the small blue squares).
[image: Screenshot showing the number of points our example path is initially made up of.]
Screenshot showing the number of points our example path is initially made up of.
If we were to simplify the path, we could specify the amount of precision we want to preserve. Here, I reduced the number of points from 34 to 19 (see below).
[image: Screenshot showing the number of points the path is made up of after simplification.]
Screenshot showing the number of points the path is made up of after simplification.
Fewer points mean less path data and a smaller file size.
Combine or Unite Paths when Possible
Similar to path simplification, combining paths can reduce file size significantly depending on the illustration and how the elements inside it are drawn.
Use Good Naming Conventions and Name Files Appropriately
This is particularly important if you’re going to use automated workflows such as SVG sprite creation. Most of the tools out there use the SVG file names when generating new assets. That is why using good naming conventions will save you a lot of time in later stages of your work.
In addition, the layer and group names you use in Illustrator will be translated to IDs in the SVG code. Instead of ending up with editor-generated names that make absolutely no sense at all, naming your elements and layers appropriately will save you some additional manual work. You will thank yourself for this especially if you are going to use CSS and JavaScript to style and manipulate the SVG.
Fit Artboard to Drawing
Ever worked with SVG and had to deal with extra white space around an icon that just won’t go away no matter how you manipulate the width of it? In many cases, the white space is the result of a drawing that is drawn inside an SVG viewport — the artboard in Illustrator — that is wider than the drawing itself. The white space will be hard to get rid of unless you know how to manipulate the SVG’s viewBox attribute. If you do, you can crop the SVG to the drawing. However, if you don’t want to get your hands dirty with code, you can save yourself some time by selecting your entire illustration and then going to Object Artboards Fit to Selected Art.
Adobe Illustrator comes with an options panel that provides you with a set of additional choices that allow you to optimize your SVGs further before you export them from the editor.
Exporting SVGs for the Web from Adobe Illustrator
Once you’re done editing your image, you’re ready to export it. Most editors provide several image formats to choose from.
To export your image as SVG, choose File Save As. A panel will open with a drop-down select menu to choose the format you want to use. Select SVG. Below the select menu, there is a checkbox option labeled Use Artboards. This option can be useful when you have created several symbols (e.g. icons) that you need to export as individual files. You can use this option to easily create one artboard per symbol, and output several SVG files (one per symbol) in a single operation.
Click Save and an options panel will open. The screenshot below shows the best settings to choose for the web.
[image: The export options panel in Illustrator with the best options for web chosen.]
The export options panel in Illustrator with the best options for web chosen.
Michaël Chaize, a senior Creative Cloud evangelist at Adobe, wrote an article explaining what each option does and means10. Let’s go over them briefly.
•The SVG Profile drop-down allows you to select different versions of SVG. The best option is SVG 1.1 as it’s the version recommended by the W3C.
•In the Fonts section, you can choose the kind of font to use in the SVG code. There are three options: Adobe CEF, SVG and Convert to outline. The most obvious one to choose is probably the SVG type. However, it is useful to convert the fonts to outlines in order to avoid embedding web fonts. It is also worth noting that SVG fonts do not work properly in Firefox and Internet Explorer — and may never do, so you might want to stay clear of this option. Converting text to outlines has many benefits, but know that sometimes — if you’re using handwritten fonts or script typefaces, for example — converting a text to outlines may increase your file size quite a bit; you may need to test and choose what your best option is and then make sure to optimize the SVG afterward as well.
•In the Options section you can choose whether you want any images to be embedded inline inside the SVG or be exported as external bitmaps and referenced inside the SVG using an xlink:href attribute on an 
 </mask>
 </defs>
 <image width="400" height="530" xlink:href="pigeon.jpg" mask="url(#mask)"></image>
</svg>
The <svg>, <mask> and <image> have the same dimensions. And that is all you need to serve a PNG with the high compression rate of a JPEG. The SVG serves as the container holding the masked image.
Of course, since this technique relies on SVG and SVG masks to work, it will only work in browsers that support SVG, which means that it does not work in IE8 (or earlier) and older versions of Android. In addition, it is recommended that you inline the SVG to make it work in most browsers. Referencing an external SVG containing the images, using an tag, for example, does not work in all browsers. You can refer to this CodePen65 for test results loading the SVG in different ways.
Using SVG as a Container for Serving Responsive Images
Another technique that uses SVG as a container for serving raster graphics is the Clown Car Technique by Estelle Weyl.
Weyl’s technique takes advantage of SVG’s ability to include raster images with <image>, and the CSS background-image property’s ability to respond to CSS media queries.
The idea behind the Clown Car Technique is to include multiple images inside the SVG, and then use CSS media queries to display the image we want depending on the size of the viewport.
Using <image> to include the raster images inside the SVG, hiding them with display: none; and showing them on demand has one major drawback: all of the images will be requested and downloaded even if they are not displayed. So, instead of using foreground images, Weyl uses CSS background images to include the images in the SVG.
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 300 329" preserveAspectRatio="xMidYMid meet">

 <title>Clown Car Technique</title>

 <style>
 svg {
 background-size: 100% 100%;
 background-repeat: no-repeat;
 }

 @media screen and (max-width: 400px) {
 svg {
 background-image: url(images/small.png);
 }
 }

 @media screen and (min-width: 401px) and (max-width: 700px) {
 svg {
 background-image: url(images/medium.png);
 }
 }

 @media screen and (min-width: 701px) and (max-width: 1000px) {
 svg {
 background-image: url(images/big.png);
 }
 }

 @media screen and (min-width: 1001px) {
 svg {
 background-image: url(images/huge.png);
 }
 }
 </style>
</svg>
The above SVG is then either included inline or referenced as an external SVG using or any other embedding technique.

In our responsive SVG, we include all of the images that we might need to serve and then show only the appropriate image based on media queries. Using CSS background images, only the image that is needed is going to be requested and downloaded.
Although clever, this technique has a lot of drawbacks: browser support inconsistencies; security issues that require <object> instead of to load the image; and using conditional comments to provide fallback for Internet Explorer, in addition to performance considerations that make this technique neither as ideal nor simple as it looks. You can read all about the technique, its gotchas, implementation options and drawbacks by reading Weyl’s article on Smashing Magazine66. Make sure you read the comments section below the article for more insight about the technique’s pros and cons.
In light of the advances made in the area of providing responsive images using the responsive images specification (<picture> and srcset) that Yoav talks about in his chapter (see part 2 of this book), we have a more semantic, performance-optimized solution to deliver responsive images today and in the future.
That said, the Clown Car Technique is still worth mentioning as a way to show how SVG can be used to provide alternative solutions, by taking advantage of the encapsulation of resources and styles in an SVG that make it similar to iframes in some of its characteristics. This fact can be leveraged such that SVG becomes a tool and a means to an end, not just another image format.
Where To Go From Here
SVG represents a very large and diverse universe with lots of capabilities. Using it allows us to bring together the best of two worlds — HTML and SVG — to achieve visual effects and optimizations that would otherwise not be possible without graphics editors.
One of the most powerful and impressive features of SVG lies in its animation effects. SVGs can be animated in a way similar to HTML elements using CSS animations67 and JavaScript. The animations range from simple transition effects (for icons and logos) to two-dimensional and even three-dimensional animations including complex transformations.
More complex animations involving shape tweening and shape morphing currently require JavaScript or SMIL to work, but SMIL is soon to be deprecated in favor of the Web Animations API.
Using SVG, you can also move elements along arbitrary paths, but this ability will also be available to us via CSS some time soon.
Certain SVG attributes like stroke-dashoffset and stroke-dasharray can be animated to obtain animated line drawing effects. You may have come across this effect on the Vox Product blog68, where they explain how they used these attributes in SVG to animate illustrations of an Xbox and PlayStation 4 on their respective review pages on the Polygon website. Jake Archibald wrote an excellent introductory article69, including an interactive demo that explains how this concept works.
SVG can also act as a web font format. However, SVG fonts are deprecated or not supported in most browsers. Do not use them. That said, there is a proposal70 that may bring SVG back to the web fonts scene as a way to bring color, gradients, animation and other aspects of SVG’s rich graphics model to web fonts. Bram Stein has written all about web font formats and their performance aspect in his chapter about web font performance (see part 2 of this book).
SVG is an exciting world with lots of potential, and it provides us with a bunch of new tools to add to our workflows that are certainly worth exploring and getting more creative with. I hope this chapter has been useful in helping you integrate SVG into your responsive web design workflow.

About the Author
[image: Sara Soueidan]
Sara is a Lebanese freelance front-end web developer, writer and speaker, focusing on HTML5, SVG, CSS and JavaScript. She writes and speaks and gives workshops on front-end web development, mostly about CSS and SVG, and has authored Codrops’ CSS Reference. When she’s not speaking or writing, she builds and delivers websites for small and medium businesses around the world, while sipping a cup of fruit-flavored green tea.
About the Reviewers
[image: Jake Archibald]
Jake Archibald works in Google Chrome’s developer relations team, working on specs, testing implementations, and ensuring developers have tools to make their jobs less painful. He’s a big fan of time-to-render optimizations, progressive enhancement, and all of that responsive stuff.
[image: Dmitry Baranovskiy]
Dmitry Baranovskiy started his career in 2000 as a back-end developer, then shifted to design and then to front-end. He used to work in such a companies as Atlassian and Sencha as a JavaScript developer, nowadays he is toggling zeros and ones at Adobe. Dmitry has a big passion for SVG and JavaScript that he utilized by creating Raphaël and Snap.SVG JavaScript libraries. When he is not coding and not spending time with his family — he is probably doing pullups.

—
1.http://www.smashingmagazine.com/2014/05/14/responsive-images-done-right-guide-picture-srcset/
2.http://www.smashingmagazine.com/2013/07/08/choosing-a-responsive-image-solution/
3.http://responsiveimages.org/
4.http://www.w3.org/TR/SVGTiny12/minimize.html
5.https://github.com/h5bp/html5-boilerplate/blob/master/dist/.htaccess#L697
6.http://css-tricks.com/css-image-replacement/
7.http://www.netvlies.nl/blog/design-interactie/retina-revolution
8.http://sarasoueidan.com/blog/structuring-grouping-referencing-in-svg/
9.http://sarasoueidan.com/blog/svg-coordinate-systems/
10.http://creativedroplets.com/export-svg-for-the-web-with-illustrator-cc/
11.https://github.com/svg/svgo
12.https://github.com/sindresorhus/grunt-svgmin
13.https://github.com/ben-eb/gulp-svgmin
14.http://24ways.org/2013/grunt-is-not-weird-and-hard/
15.https://github.com/davidderaedt/SVG-NOW
16.https://github.com/svg/svgo-gui
17.https://github.com/svg/svgo-osx-folder-action
18.http://jakearchibald.github.io/svgomg/
19.http://dbushell.com/2013/02/04/a-primer-to-front-end-svg-hacking/
20.http://en.wikipedia.org/wiki/Same-origin_policy
21.http://zslabs.com/articles/svg-background-fill
22.https://github.com/h5bp/html5-boilerplate/blob/master/dist/.htaccess
23.http://ianfeather.co.uk/ten-reasons-we-switched-from-an-icon-font-to-svg/
24.http://css-tricks.com/stackicons-icon-fonts/
25.http://tympanus.net/codrops/2013/11/05/animated-svg-icons-with-snap-svg/
26.http://www.filamentgroup.com/lab/bulletproof_icon_fonts.html
27.https://icomoon.io/
28.http://css-tricks.com/icon-fonts-vs-svg/
29.https://docs.google.com/spreadsheet/ccc?key=0Ag5_yGvxpINRdHFYeUJPNnZMWUZKR2ItMEpRTXZPdUE#gid=0
30.http://grumpicon.com/
31.https://github.com/filamentgroup/grunticon
32.http://iconizr.com/
https://github.com/jkphl/svg-sprite
33.https://tools.ietf.org/html/rfc1738
34.http://www.mobify.com/blog/data-uris-are-slow-on-mobile/
35.http://www.mobify.com/blog/base64-does-not-impact-data-uri-performance/
36.http://css-tricks.com/probably-dont-base64-svg/
37.http://www.mobify.com/blog/css-sprites-vs-data-uris-which-is-faster-on-mobile/
38.http://calendar.perfplanet.com/2011/why-inlining-everything-is-not-the-answer/
39.https://http2.github.io/
40.https://github.com/FWeinb/grunt-svgstore
41.https://github.com/jonathantneal/svg4everybody
42.http://www.html5rocks.com/en/tutorials/webcomponents/shadowdom-201/#toc-style-cat
43.http://codepen.io/FWeinb/blog/quick-tip-svg-use-style-two-colors
44.http://codepen.io/AmeliaBR/thoughts/customizable-svg-icons-css-variables
45.https://github.com/yoksel/svg-fallback
46.http://www.w3.org/TR/SVG/struct.html#ConditionalProcessing
47.http://www.kaizou.org/2009/03/inline-svg-fallback/
48.http://developersdev.blogspot.ru/2014/10/svg-fallback-pure-css-can-i-use-part-5.html
49.http://modernizr.com/
50.http://lynn.ru/examples/svg/en.html
51.http://jakearchibald.com/2013/having-fun-with-image/
52.http://germanforblack.com/post/43975575422/protip-all-browsers-that-support-svg-background-images
53.http://caniuse.com/#feat=svg-fragment
54.http://betravis.github.io/icon-methods/svg-sprite-sheets.html
55.http://simurai.com/blog/2012/04/02/svg-stacks/
56.http://alistapart.com/article/creating-intrinsic-ratios-for-video/
57.http://www.w3.org/TR/SVG2/styling.html#SVGStylingProperties
58.http://responsiveimagescg.github.io/eq-usecases/
59.http://www.smashingmagazine.com/2014/03/05/rethinking-responsive-svg/
60.http://www.w3.org/TR/SVG-access/
61.http://www.paciellogroup.com/blog/2013/12/using-aria-enhance-svg-accessibility/
62.http://www.sitepoint.com/tips-accessible-svg/
63.http://w3.eleqtriq.com/2014/08/applying-alpha-channels-to-jpgs/
64.http://peterhrynkow.com/how-to-compress-a-png-like-a-jpeg/
65.http://codepen.io/shshaw/details/IDbqC/
66.http://smashed.by/clowncar
67.http://www.smashingmagazine.com/2014/11/03/styling-and-animating-svgs-with-css/
68.http://product.voxmedia.com/2013/11/25/5426880/polygon-feature-design-svg-animations-for-fun-and-profit
69.http://jakearchibald.com/2013/animated-line-drawing-svg/
70.http://www.w3.org/2013/10/SVG_in_OpenType/

[image: Chapter Illustration]

Building Advanced Responsive Modules With Flexbox
By Zoe M. GillenwaterI can remember when I first heard you could create a web page layout without tables — just CSS. I was rather confused, but intrigued. There was this new thing called CSS floats, and you could use it to place boxes beside each other in columns without having to struggle against massively nested table markup, spacer GIFs, rowspan and colspan, and all the other junk that made tables so ill-suited for web layout. I dived into float-based layout headfirst and didn’t look back, but along the way I discovered, as I’m sure you have, that floats have their own shortcomings that can sometimes make them tricky to work with — after all, they weren’t actually designed to control overall page layout.
For one thing, you always have to plan for some sort of float containment method so that the floats don’t hang out of the bottom of their parent containers. You also need to be careful that your floats don’t wrap when you didn't intend for them to do so. Plus, although floats don’t suffer from the rigid structure of tables, you’re still somewhat dependent on the HTML source order, since floats don’t move up, only over to one side (at least not without all sorts of negative margin madness). And, of course, there are the usual complaints that you can’t make separate floats the same height, and you can’t center a float horizontally or vertically. Most of these things can be worked around in various ways, sure, but the techniques can be messy and confusing. They’re complications that have to be worried about and fiddled with every time, instead of features that just work.
Add to the mix the requirement that your float-based layout be responsive, and these limitations become even more obvious and frustrating. Being able to move something just left or right isn’t good enough when you need the same box to appear at various places on the screen at different viewport sizes. Plus, now that you’re using percentages to size your floats, there’s an even greater likelihood that a miscalculation on your part, or a rounding error on the browser’s part, will send a float wrapping. Using display:table or display:inline-block solves some of the issues with float-based layout, but with one big limitation: the source order has to match the visual order, even more so than with floats.
The CSS Flexible Box Layout module1, called flexbox for short, solves a lot of these shortcomings and makes building responsive layouts much easier than our current layout methods. Flexbox gives you more control over the things you care about in a responsive layout — like order, alignment, and the proportional sizes of your boxes — and lets the browser figure out the rest, the math-y stuff that computers are good at, like the exact dimensions needed for the boxes to perfectly fill the available space. You can create much more complex and reliable layouts with flexbox than you can with floats, table display, or inline-block alone, all with far less CSS.
When To Use (And Not Use) Flexbox
That doesn’t mean flexbox is a silver bullet. It’s one of several new layout mechanisms that CSS3 offers us, and each is well-suited to different uses.
Go for It!
Flexbox is strongest when used to lay out, size, and align the components within a section on a page, or the content within a component. For instance, flexbox would be great for laying out the links within a menu, the fields within a complex form, or the story boxes within a main content area. We’ll look at several component layout examples like these throughout this chapter.
Even though a couple of browsers still in use today don’t support flexbox (basically IE9 and earlier), you can still use it today as a way to progressively enhance the responsiveness of your UI components. Non-supporting browsers may render alignment, spacing or sizing a little differently from flexbox browsers, but we’ll make sure they don’t display anything broken, weird or ugly. Flexbox is a great progressive enhancement tool when fine-tuning the appearance of your components.
If you’re building a responsive site, flexbox can be especially useful in making your components more adaptive to the changing dimensions of their containers. The browser can automatically resize and move chunks of content as needed, often without you having to add any media queries. If you want to maximize the responsiveness of your content, flexbox is the way to go.
Flexbox is also a great option for creating the overall page layout on narrow mobile screens. That’s because mobile layouts are usually much simpler than desktop layouts, and because browser support is excellent among mobile browsers — all the major mobile browsers support it.
For up-to-date stats on which browsers support flexbox, head to http://caniuse.com/#feat=flexbox2.

[image: Can I Use shows that all major browsers support flexbox, or over 92% of browsers in use globally (as of spring 2015).]
Can I Use shows that all major browsers support flexbox, or over 92% of browsers in use globally (as of spring 2015).
Hold Up
Apart from mobile, flexbox is not terribly well-suited to handling the overall page layout, unless that layout is relatively simple. There are a number of reasons for this. For one thing, flexbox rather depends on items being siblings to one another. If you have a complicated HTML structure, you may not be able to get different pieces at different levels within the hierarchy to work together in the way you want. For instance, if you have two sibling elements, one with child elements nested inside, you can use flexbox to make those siblings match each other in width and height, but you can’t get the children to automatically match the width and height of their parent’s sibling.
Flexbox is not a true grid system. Within a single row or column, flexbox can make all the items have equal widths or heights, or proportional dimensions, which seems very grid-like. But for every new line, flexbox will start over on its calculations, resulting in items that don’t necessarily line up with the items in the lines before or after. Relative sizing is an awesome feature of flexbox, but the sizes of items are relative only to siblings in the same row or column.
Another reason flexbox isn’t the best for overall page layout is that you don’t have complete freedom over the visual placement of your content without regard for HTML source order. That’s the holy grail of page layout, and it’s something that CSS Grid Layout3 will give us, once it’s fully developed and more widely supported. Flexbox can do some reordering, but it’s still a bit source-dependent, as we’ll see in more detail later on with the order property.
The final reason to avoid flexbox for overall page layout for desktop (at least for the time being) is that browser support for flexbox on desktop still has a couple of holes: IE9 and earlier versions of IE don’t support it, and all other major desktop browsers do. While this means that flexbox does actually have great support on desktop browsers — enough to use it to lay out individual page components — depriving users of the overall page layout is a lot more problematic than them not seeing the exact sizes and alignment within a page component. I’m completely fine with users of IE9 and earlier seeing something a little different from other browsers. But not seeing any layout at all? That’s going a bit far.
Apart from desktop page layout, flexbox is also not the right choice for flowing content into multiple columns. That’s the job of the CSS Multi-column Layout module4. Flexbox can lay out blocks of content beside one another, creating multiple columns, but each of those columns has to be a separate element in the HTML.

So again, use flexbox for what it’s been designed to do and is good at: laying out individual components and their chunks of content. Like any tool, it has its strengths and weaknesses.
Diving Into The Code
Once you’ve decided that flexbox is appropriate for the layout task you want to complete, you’ll be ready to get coding. Before diving deep into the code, keep in mind that since flexbox is a totally new layout mechanism, it introduces a lot of new CSS properties, as well as some new layout concepts like main axis and cross axis. All these new terms may sound daunting at first, but they do make sense — and once you start actually playing with them in real pages, you’ll be able to really understand what exactly they do, and flexbox stops looking so daunting.
Let's dive deeper into flexbox and slowly find our way through all the (fancy and not so fancy) properties it has.
Flexbox Activate!
To turn on flexbox, set display:flex or display:inline-flex on a wrapper element to make it a flex container and indicate that you’re using the new visual formatting model on its children, called flex items. Only the children become flex items, not all descendants of the flex container. The flex value makes the flex container a block-level element, while the inline-flex value makes the flex container an atomic inline-level element (an inline box that doesn't break across lines, like inline-block elements).
<div class="container">
 <div><p>Lorem ipsum dolor sit amet, consectetur adipiscing elit.</p></div>
 <div><p>Nulla at purus ipsum.</p></div>
 <div><p>Aliquam lacinia non risus eu rhoncus.</p></div>
 <div><p>Nulla blandit erat ac nunc malesuada pellentesque.</p></div>
</div>
.container {
 display: flex;
}
If you’re also using the vendor-prefixed versions of flexbox, add the prefix to the display value, not on the display property itself. For example, display:-webkit-flex.

Well, would you look at that — by setting that one little property I’ve already achieved a multi-column layout! The flex items, each one a <div>, change from their default stacking behavior to sitting side by side.
[image: By default, flex items sit side by side as soon as you turn their parent into a flex container.]
By default, flex items sit side by side as soon as you turn their parent into a flex container.
Setting Orientation
The items lay out side by side because when you create a flex container, the browser automatically sets its flex-direction property to the default value of row.This property, set on the flex container, sets the flow direction of the flex items within it.
In a nutshell, flex-direction lays out the items in rows or columns, horizontally or vertically. It’s setting the direction of the axis along which the flex container's children (flex items) will be displayed. In flexbox terminology, the direction you set is called the main axis, with the other direction being the cross axis. Our flex items are flowing horizontally right now, so that’s the main axis; width, the horizontal dimension, is the main size of its child flex items. If we had set flex-direction to column this would all be reversed.
Plus, flex items can start their layout journey from any side of their container — not just top-to-bottom and left-to-right, but also bottom-to-top and right-to-left, depending on what you tell the flex container to do and the writing mode of the page (the direction in which text flows). The origin point for the flex items along their main axis is called the main start side of the container, and they will flow from there to the main end side. See the graphic below for all of these orientation-related flexbox terms.
[image: Flexbox is direction-neutral, which is why it uses generic terms like main start instead of absolute terms like top.]
Flexbox is direction-neutral, which is why it uses generic terms like main start instead of absolute terms like top.
Although these axes just sound like W3C mumbo-jumbo syntax detail that you can ignore, it's actually important to remember which axis you're dealing with every time you work with a flex container. That's because the axes affect all of the other flexbox properties that will come later. Flexbox is so flexible because its properties can make items lay out and align in any direction, but it needs to know at what point it’s supposed to start and move out from, and in which direction.
Flex items can be laid out side by side, running from left to right or right to left, depending on the value you choose as well as the writing direction of the language of the page, or stacked vertically, running from top to bottom or bottom to top.
	row (default)	Lay out the items horizontally in the same direction as the text direction: left to right for ltr languages and right to left for rtl languages.	[image: Flex direction row]
	row-reverse	Same as row but flipped, so right to left for ltr and left to right for rtl.	[image: Flex direction row reverse]
	column	Lay out items following the block direction of the current writing mode; usually this means vertical from top to bottom.	[image: Flex direction column]
	column-reverse	Same as column but flipped, so usually vertical from bottom to top.	[image: Flex direction column-reverse]

flex-direction: specifying the direction in which to lay out the container’s flex items. (These diagrams are all based on a language that runs from left to right and top to bottom.)

As you can imagine, this makes flexbox great for RWD, since you can change orientation easily at different screen sizes. If you want these same boxes to stack on narrow screens, for instance, you can change flex-direction to column.
.container {
 display: flex;
 flex-direction: column;
}
[image: Changing the flex-direction value to column changes the divs’ layout from side by side to vertically stacked.]
Changing the flex-direction value to column changes the <div>s’ layout from side by side to vertically stacked.
The margins of adjacent flex items don’t collapse together. So, if you have a bunch of vertical flex items with 10 pixels of top and bottom margin each, you’ll end up with 20 pixels of space between them.

In the real world, however, layouts are rarely as simple as this. Most of the time, you’ll probably have a mix of horizontal and vertical elements in all but the narrowest of views. Fortunately, with flexbox you don’t have to pick just one orientation or the other — you can turn a flex item into a flex container itself and give its children a different layout than the parent has.
<div class="container vertical">
 <div><p>Lorem ipsum dolor sit amet, consectetur adipiscing elit.</p></div>
 <div class="container horizontal">
 <p>Nulla at purus ipsum.</p>
 <p>Aliquam lacinia non risus eu rhoncus.</p>
 </div>
 <div><p>Aliquam lacinia non risus eu rhoncus.</p></div>
 <div><p>Nulla blandit erat ac nunc malesuada pellentesque.</p></div>
</div>
.container {
 display: flex;
}
.horizontal {
 flex-direction: row;
}
.vertical {
 flex-direction: column;
}
[image: The second green box is both a flex item and a flex container to its child orange boxes, which are laid out horizontally not vertically like their parent and its siblings.]
The second green box is both a flex item and a flex container to its child orange boxes, which are laid out horizontally not vertically like their parent and its siblings.
Changing Orientation Automatically
So far, flexbox perhaps doesn’t seem all that exciting. “I can stack boxes? I already have display:block for that. I can put boxes side by side? Already have display:inline-block, float, and all sorts of things for that.” You’re right. But by adding another flexbox property, flex-wrap, we can let the browser decide for us when to switch from vertical to horizontal orientation, based on when there’s enough space for the items to fit comfortably side by side.
Technically, the browser isn’t changing orientation — flex-direction will be set to row all along. It’s just that with flex-wrap added and set to the wrap value, the browser is allowed to wrap the flex items onto multiple rows, stacked on top of one another. That’s what the flex-wrap property does: it doesn’t force wrapping to happen, it merely tells the browser whether wrapping is allowed to happen when needed (similar to floats or inline-block elements); or whether it should never happen but allow overflowing instead (similar to table-cell elements).
	Value	Behavior	flex direction: row	flex direction: column
	nowrap (default)	Lay out the items in a single line (row or column) regardless if they have to overflow.	[image: Flex-wrap nowrap row]	[image: flex-direction column]
	wrap	Flow the items onto multiple lines if needed (following the writing direction) to make the items fit without overflowing.	[image: Flex-wrap wrap row]	[image: flex-wrap wrap column]
	wrap-reverse	Same as wrap but stack the new lines in the opposite direction to the writing direction.	[image: Flex-wrap wrap-reverse row]	[image: flex-wrap wrap-reverse]

flex-wrap: specifying whether the container’s flex items can wrap if needed and which direction the new lines stack in

There’s a small percentage of browsers still out there that don’t support flex-wrap but do support the rest of flexbox, such as Firefox 27 and Android 4.3. Check your own usage logs and Can I Use5 to decide whether this will be a problem for your users and the way you’re using flexbox.

By default, flex items always stay on the same line together, whether that be a row or a column, thanks to flex-wrap being set by default to nowrap. Sometimes you want this rigidity. But when you do want wrapping to happen, you can simply set flex-wrap to wrap, as I’m doing here to allow items to stack on narrow screens. Even though the orientation isn’t set to column, what we’ll see is vertical stacking on narrow screens, where everything can’t fit on one line.
.container {
 display: flex;
 flex-wrap: wrap;
}
I could also have used the shorthand flex-flow: row wrap; here, to set both flex-direction and flex-wrap at the same time.
[image: With flex-wrap:wrap, the row-oriented flex container is allowed to make multiple rows when needed, instead of just keeping all the flex items in one row.]
With flex-wrap:wrap, the row-oriented flex container is allowed to make multiple rows when needed, instead of just keeping all the flex items in one row.
[image: If flex-wrap was instead left at its default value of nowrap, the browser would keep the flex items on one row no matter what.]
If flex-wrap was instead left at its default value of nowrap, the browser would keep the flex items on one row no matter what.
Widen the viewport and your single-column layout will switch to two columns per row automatically, and then more, when there’s enough room for them to fit and without you having to add different layout styles with media queries.
[image: As you widen your viewport, items will begin to sit side by side.]
As you widen your viewport, items will begin to sit side by side.
Of course, this doesn’t look so hot when the blocks don’t stretch to fill the width of their container. What we have right now looks no different from using display:inline-block. We need to do something to specify the widths of these blocks. That’s where the flex property comes in, which makes setting dimensions in responsive layouts much easier.
Sizing Boxes
You’re probably familiar with Ethan Marcotte’s famous RWD formula for coming up with the proper percentage widths for columns in a responsive layout: target ÷ context = result. As far as math goes this is pretty simple stuff. But it’s still math and any time math gets involved in design I feel like there has to be a simpler way.
Plus, this only accounts for widths. Throw margin, padding and border sizes into the mix and you’ve got an even trickier equation to solve. Combining different units of measurement in a single layout is called a hybrid layout; and when you’ve got a hybrid layout, you’ve got a headache.
Setting box-sizing:border-box takes care of the problem of mixing pixel- or em-based padding and borders with percentage widths, since the pixels or ems will just get subtracted from the declared width values automatically by the browser. But this doesn’t affect margin. If you want to have 20 pixels of space (gutters) between your columns but you want those columns to have percentage widths, how do you get everything to add up to 100%?
There are clever tricks to work around the problems of hybrid layouts, but none are as simple as what flexbox provides: the flex property. It lets us specify proportional sizes that take margin, padding and border into account so that items can automatically resize to fit the available space perfectly. It’s pretty awesome and powerful, but also really easy to misunderstand and screw up. (Believe me, I’ve learned this the hard way.)
Understanding the flex Property
The flex property is set on flex items directly and affects either their width or height, whichever is the main dimension along the main axis. (See, there are the axes I told you about!)
There are three components to flex, which is a shorthand property: flex-grow, flex-shrink, and flex-basis. Here’s an example of what a flex value might look like, with these three pieces in order:
.stretch-and-squish {
 flex: 1 1 200px;
}
The flex-grow value means how much the flex item will grow relative to other items if there’s extra space available on a line; you can think of it as the number of shares of extra space that a flex item gets. In the example above, .stretch-and-squish would get one share of any extra pixels in its line, due to the first value of 1 in the three-part flex value.
The flex-shrink value means how much the flex item will shrink relative to others if there’s not enough space. It’s basically the proportion of the overflowing pixels that it will have lopped off to get everything to fit again. If the .stretch-and-squish element or its siblings are overflowing, it will get one share of the overflowing pixels deducted from its size, due to the second value of 1.
Both flex-grow and flex-shrink are set to unitless integers (0, 1, 2, etc.) since they’re specifying a proportion, not an absolute value. If you set them to 0, you’re saying that you don’t want them to grow or shrink at all. But grow or shrink compared to what? That’s where the very important third component of the flex shorthand comes in, flex-basis.
The flex-basis property is the initial starting dimension before free space is added on or taken away from the item. It can be set to any standard width or height unit (.stretch-and-squish is set to 200px) and these values act the same as their width or height equivalents. For instance, a percentage value for flex-basis is relative to the size of the container, and it affects the size of the content box unless you’ve changed the box model using box-sizing:border-box. The flex-basis property can also be set to one of two special keywords, auto or content, which I’ll explain with an example in a moment.

Browsers first size each of the flex items according to its flex-basis value. If wrapping is turned off, it puts all of them along the same line (row or column). If wrapping is on, it puts as many items along a line as can fit before wrapping and starting a new line. Now that the items are on lines and have starting dimensions, and possibly some padding, border and margin taking up space too, the browser can see how much space is left over or how much space is overflowing on each line. The browser then divvies up this excess space in whatever ratio the flex-grow and flex-shrink values specify.
If flex-grow and flex-shrink are off (set to 0), then flex-basis acts just like standard width or height, setting the flex item to a specific size. If flex-grow is on (set to some positive number) and flex-shrink is off, then flex-basis acts a bit like min-width or min-height: “You can get bigger than this, but no smaller.” Swap that around (flex-grow off, flex-shrink on) and flex-basis acts like max-width or max-height: “You can get smaller than this, but no bigger.” And if both are on, well, flex-basis is like something we’ve never had before! It’s a starting point, and everything else that can affect dimension — margins, padding, border, even just extra pixels on the line — can be flexibly added or removed from that starting point to make everything fit nicely.
If the flex property and process still sounds confusing, you aren't alone: it’s definitely confusing when you first read about it. It took me many attempts to get my head around it. But once you look at real examples, as we will in a moment, and play around with it yourself, you get a clearer sense of how all the pieces work together.
By default, flex items have a flex value of 0 1 auto, which means they won’t grow to fill space but instead size to their content and can shrink to their minimum size (by wrapping text, for instance). If you want your flex items completely inflexible (0 0 auto), you can use flex:none. It’s also acceptable to use only one or two values within the flex shorthand instead of all three, such as flex:1, which the browser would interpret to mean flex-grow:1. See the table below for more information on these values.
		flex-grow	flex-shrink	flex-basis
	Default value (also equivalent to flex:initial)	0	1	auto
	Value when omitted from flex shorthand	1	1	0%

Full-Width and Equal-Width Made Easy
These flex property components probably don’t make a lot of sense without some real examples to look at. Let’s start with the basic colored blocks we were just looking at. What we want to happen is for each item to stretch to fill the full width of the container when there is only one item per line, but when there are multiple items per line, they should have equal widths.
A flex-grow value of 1 will accomplish both of these things. Since it makes items grow when there is extra space in a line, it will stretch each single-line item to take up any space left over on its line. And since all the items have the same flex-grow value of 1s, they will each take up one equal share of the extra space when there is more than one on a line together.
The flex-shrink value isn’t that important here, since our items aren’t overflowing from their gray parent box, which would be the only time flex-shrink would come into effect. Setting it to 0 (no shrinking allowed) or 1 (all items can shrink by one share) is fine. But the value of flex-basis is very important because the initial dimension determines when the items will wrap, as I described in the browser’s layout process above. Let me show you what I mean.
The first flex-basis value we’ll try is auto. This tells the browser to just use whatever the main size is already set to, via the width or height property; if the main size isn’t already explicitly set, it will size the items according to their content.
Setting flex-basis:content directly indicates that you want to size flex items based on their content. But it’s one of the few new additions to the flexbox spec since it became a candidate recommendation and therefore doesn’t yet have good support. For now, you can use auto for flex-basis and get the same effect if width or height are also set to auto, their default values.

.item {
 flex: 1 1 auto;
}
[image: Because flex-grow is set to 1 on every box, they each grow to fill the extra space on their line.]
Because flex-grow is set to 1 on every box, they each grow to fill the extra space on their line.
[image: At a wider viewport width, two can fit on each line and they still grow to fill the extra space on the line. But they aren’t equal width because their starting dimensions, flex-basis, are based on their content width.]
At a wider viewport width, two can fit on each line and they still grow to fill the extra space on the line. But they aren’t equal width because their starting dimensions, flex-basis, are based on their content width.
You can see that thanks to the flex-grow value of 1, the items do stretch to fill the full width when they are alone on a line; when there are several on a line, they stretch proportional to their initial width, based on the length of the text block that each contains. The first item is the widest because it has the widest content, for example.
If you don’t want the items to size according to their content but instead match each other in width, you’ll need to give them each the same starting width. That will mean that when browsers add on extra pixels to make them stretch, they will be adding those extra pixels to blocks that are already all the same width. Thus, they will all grow by the same amount and remain equally wide.
Let’s start simple and just set the flex-basis for all of them to 0px.
.item {
 flex: 1 1 0px;
}
This gives the boxes equal width when they’re on a line together, but if you narrow your viewport you’ll see that they never wrap. The text just overflows without a care in the world.
[image: When the starting width is 0px for all the boxes, they all grow the same amount and end up of equal width.]
When the starting width is 0px for all the boxes, they all grow the same amount and end up of equal width.
[image: The flex-wrap property is still on, but with flex-basis set to 0px the boxes never have a reason to wrap.]
The flex-wrap property is still on, but with flex-basis set to 0px the boxes never have a reason to wrap.
This happens because of that 0px value; that’s the starting dimension of each item. The flex-grow property will let the items get bigger than this if there’s room, but if not, there’s nothing stopping them from shrinking all the way back down to their initial size of zero.
Instead, we need to set flex-basis to some value that we never want the items shrinking below — just like min-width, but with flexibility.
.item {
 flex: 1 1 10em;
}
With this change, browsers put as many 10em-wide items as they can on a line, then wrap when room runs out, and then go back to distribute the extra pixels on each line. No more text overflow!
[image: At narrow widths, the boxes will now wrap when they hit the flex-basis value of 10em.]
At narrow widths, the boxes will now wrap when they hit the flex-basis value of 10em.
Note that flex-basis doesn’t always act like min-width. It does in this case because flex-wrap is on; once browsers can’t fit items, they just wrap them and so never have to shrink the items smaller than their starting width. If flex-wrap is off and flex-shrink is on, browsers have permission to go smaller than the flex-basis value.

Even with this simple example, you can see how dramatically a layout can change without having to create different versions of that layout within multiple media queries. These four blocks might be four feature stories on your home page that you want to sit in four columns on wide screens, two columns on medium screens, and one column on narrow screens. You don’t have to work out where to put the breakpoints and what crazy percentage widths to assign to your boxes within each breakpoint — browsers do all that.
In fact, I don’t have to put any of this in a media query — I can put it in the default styles outside any media queries and each layout change just kicks in whenever space allows. It’s as if browsers figure out content-driven breakpoints for you. This doesn’t make media queries obsolete, of course (I still love you guys, MQs!), but it’s nice any time you can automate things and keep your CSS simpler.
A non-flexbox fallback for this sort of full-width grid layout that does involve the use of media queries would be to use text-align:justify in combination with percentage widths. Patrick Kunka explains how in “Text-align: Justify and RWD6.” We’ll talk later about the specifics of combining different layout techniques with flexbox layout.

Real-World RWD Uses for the flex Property
I’ve already mentioned that you shouldn’t place your entire page layout in the hands of flexbox, but the flex property does make laying out many responsive components a lot simpler and enables flexible behavior you can’t achieve with any other CSS. Let’s look at a few examples, starting with a form.
It’s not uncommon for forms in responsive web pages to switch between at least two layouts: one with the labels stacked over the fields on narrow screens; and another with the labels beside the fields on wider screens. Switching between these layouts is quite easy to do by writing two sets of layout styles, each in its own media query; but flexbox allows you to write one set of layout styles to control both — no media queries needed. Here’s how that CSS might look:
.label-field-pair {
 display: flex;
 flex-wrap: wrap;
}
.label-field-pair label {
 flex: 0 0 8em;
 margin-right: 10px;
}
.label-field-pair input {
 flex: 1 1 12em;
}
Let’s look closer at what’s happening here. Setting both flex-grow and flex-shrink to 0 on the labels means they will stay stuck at their flex-basis starting width of 8em. But because I’ve set flex-grow to 1 on the inputs, each will always stretch to fill whatever space is left on its line; their flex-basis value of 12em acts like a minimum width. At wider viewport sizes, there’s room for an 8em label, 10px margin and 12em input all on the same line. As the viewport narrows, browsers figure out when the components can no longer fit beside one another and automatically wrap the input at this point.
[image: When there aren’t enough pixels to place the input next to the label, the browser can wrap the input and then stretch it to fill its container.]
When there aren’t enough pixels to place the input next to the label, the browser can wrap the input and then stretch it to fill its container.
[image: This wider form layout was created with the same CSS as the narrow version. The inputs always stretch to fill the remaining space on a line, making full-width forms easy.]
This wider form layout was created with the same CSS as the narrow version. The inputs always stretch to fill the remaining space on a line, making full-width forms easy.
This form is just one simple example of a full-width component with a hybrid layout. The flex property comes in handy any time you want a component to stretch to the full width or height of its container and you don’t have all the inner pieces of the component in the same unit of measurement. You can size some of the pieces with pixels or ems, or just leave them at their initial content-driven size, and then use the flex property on the remaining pieces to get them to stretch and fill up whatever space is left over.
Creating a page with an off-canvas menu can be a more complex hybrid layout to achieve. Let’s say you want the menu to slide in from the left, and instead of pushing the content area off the right side of the screen you want the content area to contract in width to let the menu fit. No big deal if the menu is set to a percentage, but tricky if it’s set to any other unit of measurement — even more so if it has no explicit width at all but rather is sized to its content.
[image: With most off-canvas menus that appear on the left, the content gets cut off on the right.]
With most off-canvas menus that appear on the left, the content gets cut off on the right.
What we need is flex-grow. Remember, for a full-width hybrid layout, set some pieces to a fixed or content-driven width (the menu) and set the remaining pieces to flex (the content area). In this case, I’ll start out with the menu set to 0 in width since I want it to be hidden by default, and set the content area to flex:1 to take up all the remaining width. (We’ll talk about why this is better than setting it to width:100% in a minute.)
html, body {
 height: 100%;
}
.container {
 display: flex;
 min-height: 100%;
}
.content {
 flex: 1;
 padding: 100px 40px 40px 40px;
 transition: all .3s;
}
.menu {
 overflow: hidden;
 width: 0;
 height: 0;
 transition: all .3s;
}
To toggle the menu’s width from 0 to auto and make it visible, I’ll use the :checked pseudo-class on an invisible checkbox to toggle the showing and hiding of the menu without JavaScript. This only works, though, if that checkbox is a sibling of the menu and content blocks, not nested within one of them. Plus, I’ll need a visible label for the checkbox, to act as the menu trigger when clicked; the label can contain a hamburger menu icon using an icon font or image.
<div class="container">
 <input id="hamburger" type="checkbox" class="hamburger-checkbox">
 <label for="hamburger" class="hamburger-label" role="button" aria-labelledby="menu"></label>

 <nav role="navigation" class="menu">
 <ul class="menu-list">
 <li class="menu-item">Publications
 <li class="menu-item">Shop
 <li class="menu-item">News
 <li class="menu-item">Events
 <li class="menu-item">Your Account
 <li class="menu-item">Contact Us

 </nav>
 <main role="main" class="content">
 ...
 </main>
</div>
.hamburger-checkbox {
 position: absolute;
 opacity: 0;
}
.hamburger-label {
 position: absolute;
 top: 40px;
 left: 40px;
 z-index: 1;
 display: block;
 width: 42px;
 height: 42px;
 font: 42px/42px FontAwesome;
 text-align: center;
 cursor: pointer;
}
The .hamburger-label element is both a flex item and absolutely positioned. This is totally fine — the absolutely positioned flex item will be placed relative to the main start corner of the content box of the flex container7. We’ll talk more about how flexbox interacts with other layout methods near the end of the chapter.
Explaining the :checked pseudo-class in detail is beyond the scope of this chapter, but if you’re not familiar with using it in this way, read more about how it works at http://css-tricks.com/almanac/selectors/c/checked/8 and http://css-tricks.com/the-checkbox-hack/9. There are also some issues with its use in older mobile browsers, which you can learn how to address, if needed, at http://timpietrusky.com/advanced-checkbox-hack10.

To make the menu appear when the user clicks or taps on the label, simply change its width from 0 to auto (or 10em, or 200px, or whatever width you want it to be once it’s visible) when hamburger-checkbox is :checked.
.hamburger-checkbox:checked ~ .menu {
 width: auto;
 height: auto;
 padding-top: 6.5em;
}
[image: Because it’s set to flex: 1, the main content area fills the space in the viewport perfectly. Contracting when the menu is visible despite the menu having no explicit width.]
Because it’s set to flex: 1, the main content area fills the space in the viewport perfectly, contracting when the menu is visible despite the menu having no explicit width.
If I had set the content block to width:100% instead of flex:1 to make it stretch to fill the viewport width, it would now be hanging off the right side of the viewport by whatever amount the menu is now taking up. But the flex property on the content block keeps this from happening. The content block instead shrinks from 100% to whatever space is left next to the menu, allowing them both to fit perfectly side by side.
I could even take this a step further by changing the placement of the menu at different viewport widths. Perhaps on very narrow screens I don’t want the content block to get so contracted when the menu appears, so I could switch flex-direction from row to column to stack the menu above the content block and make it appear to slide in from the top instead of the left. On very wide screens I might not hide the menu at all but instead have it as an always visible sidebar menu or top nav bar. All of this is trivial to accomplish with a few flexbox properties and some media queries. Full-width hybrid layouts no longer have to be a headache to build.
Making a layout or component stretch to full width can sometimes be hard even when you’re not using a hybrid layout but are using the same unit of measurement all the way across a line. Think of a gallery with an unknown or variable number of items in it, each item set to a certain pixel or em width. In a fluid layout, it’s ideal to have a gallery without hardcoded rows, so that the items can simply wrap as needed, varying the number on a line depending on how many can fit in a given viewport width. Using display:inline-block makes this easy. But the problem with display:inline-block is that it won’t stretch the items equally to make each row take up the full width of its container. This can be accomplished with .display:table-cell instead, but then you lose the wrapping ability of inline-block.
[image: Using display:inline-block is an easy way to make a gallery where the items wrap when needed, without having to hard code percentage widths into media queries. But it doesn’t allow the rows to stretch to the full width.]
Using display:inline-block is an easy way to make a gallery where the items wrap when needed, without having to hard code percentage widths into media queries. But it doesn’t allow the rows to stretch to the full width.
The flex property combined with flex-wrap gives you the best of both worlds. Give each item a flex-basis in pixels or ems, so it starts out at that width; set flex-grow to 1 and items can then stretch farther if needed, as though its width was set to a percentage and filled the full width of its row with its siblings.
.gallery {
 display: flex;
 flex-wrap: wrap;
 margin-right: -20px;
}
.gallery-item {
 flex: 1 0 250px;
 box-sizing: content-box;
 margin: 0 20px 20px 0;
 padding: 10px;
 border: 1px solid #dddddd;
 text-align: center;
}
[image: The items wrap when needed, then stretch to fill their row.]
The items wrap when needed, then stretch to fill their row.
While I’m normally a big fan of box-sizing:border-box, I’ve overridden it here with box-sizing:content-box; then I can set my flex-basis to the width of my largest image (250px), ensuring that it will be the minimum width of the content area of the box, not the total space that the box takes up with padding and border included.
Remember, flex-basis sets the size of whichever box is being used by the box-sizing property, the content box or the border box. IE10 and 11, however, always make flex-basis size the content box, even if you have box-sizing:border-box set, adding padding and border onto the flex-basis size. This is not a big deal if you have flex-shrink on, because it will simply subtract the padding and border away again if needed, but it can cause overflows if flex-shrink is 0. To work around this bug, you can set width/height to the value you want flex-basis to be, since IE treats box-sizing correctly with the width property, and then set flex-basis to auto so it inherits that width, but with the benefit of box-sizing respected.

Advanced Alignment Control
You may have noticed that in all the examples I’ve shown you so far (or rather, for all the flex-direction:row examples), the boxes are all equal in height with others on their line, similar to how display:table-cell makes side-by-side boxes equal in height. This is due to the flexbox align-items property, which is set on the flex container and has stretch as its default value. You get equal-height columns for free with flexbox!
For a non-flexbox fallback for equal-height columns, you can use display:table-cell, of course, but you can also use some JavaScript. Osvaldas Valutis explains how to use flexbox with JavaScript for equal-height gallery items at http://osvaldas.info/flexbox-based-responsive-equal-height-blocks-with-javascript-fallback11.

This is only one of a bevy of alignment options that flexbox provides, through the use of four new properties:
•The align-items property on the flex container determines how flex items are laid out along the cross axis on the current line. For instance, when flex-direction is set to row, the cross axis is vertical, and thus align-items affects the flex items’ vertical alignment; if flex-direction was set to column, it would affect their horizontal alignment. Not only is this handy for equal-height columns, but it also makes vertical centering a breeze (using align-items:center for horizontal flex items).
•The align-self property on an individual flex item establishes how that item is aligned on the cross axis, overriding the default specified by align-items. If you wanted all of your items across a line to be vertically centered with each other via align-items:center on the container, but you also needed just one of those items to be bottom-aligned instead, you could set align-self:flex-end on it to override the centering on that item alone.
•The justify-content property on the flex container stipulates how the flex items are laid out along the main axis on the current line. It basically takes any free space left in the line and distributes it between, before or after the flex items. It’s particularly handy for spacing items out across the full width of a line, as we’ll see in a moment.
•The align-content property on a multi-line flex container determines how the container’s lines are laid out when there is extra space in the cross axis. It’s similar to justify-content in that it affects where the gaps go, but it applies to entire lines of flex items, rather than items themselves within a single line.
	flex-start	Place the cross-start margin edge of the items on the cross-start line.	[image: Align items flex-start]
	flex-end	Place the cross-end margin edge of the items on the cross-end line.	[image: align-items flex-end]
	center	Center the items’ margin box in the cross axis.	[image: align-items center]
	baseline	Align the items along their baselines.	[image: align-items baseline]
	stretch (default)	Stretch the items to fill the cross size of the line (but still respect width and height constraints).	[image: align-items stretch]

align-items: specifying the alignment of the container’s flex items along its cross axis. (align-self uses these same values, but you apply it to a single flex item, not a flex container.)

	flex-start (default)	Pack the items starting at the main-start edge of the line.	[image: justify-content flex-start]
	flex-end	Pack the items at the main-end edge of the line.	[image: justify-content flex-end]
	center	Place items in the center of the line.	[image: justify-content center]
	space-between	Evenly distribute the items across the line, with the first item flush with the main-start edge and the last item flush with the main-end edge.	[image: justify-content space-between]
	space-around	Evenly distribute the items across the line, but with equal spaces on each side of each item, so that the empty space before the first and after the last items equals half of the space between two adjacent items.	[image: justify-content space-around]

justify-content: specifying the alignment of the container’s flex items along its main axis, distributing the extra space in the line outside the flex items

	flex-start	Pack the lines starting at the cross-start edge of the container.	[image: align-content flex-start]
	flex-end	Pack the lines at the cross-end edge of the container.	[image: align-content flex-end]
	center	Place lines in the center of the container’s cross axis.	[image: align-content center]
	space-between	Evenly distribute the lines across the cross axis of the container, with the first line flush with the cross-start edge and the last line flush with the cross-end edge.	[image: align-content space between]
	space-around	Evenly distribute the lines across the cross axis, but with equal spaces on each side of each line, so that the empty space before the first and after the last lines equals half of the space between two adjacent lines.	[image: align-content space-around]
	stretch (default)	Split the free space evenly between the lines and stretch each by that amount to take up remaining space in the cross axis.	[image: align-content stretch]

align-content: specifying the alignment of a container's lines when there is extra space on the cross-axis, distributing the extra space in the container between or to the lines

Without flexbox, many of these alignment options are tricky to achieve, and some are just outright impossible. Alignment can become even trickier in responsive layouts, where shifting and resizing content can knock it out of whack at any moment. Flexbox gives us much more control and precision with alignment. Because alignment is usually a purely aesthetic enhancement rather than an integral part of the meaning or usability of our content, it’s the perfect piece of flexbox to layer on as a progressive enhancement, regardless of whether or not you’re using flexbox more broadly to control layout.
For instance, remember the off-canvas menu, and how I mentioned it could become a top nav bar on wide screens? Here’s some CSS that could do that, hiding the hamburger icon and making the menu visible by default:
@media (min-width: 70em) {
 .container {
 flex-direction: column;
 }
 .hamburger-label {
 display: none;
 }
 .sidebar {
 width: auto;
 height: auto;
 }
 .hamburger-checkbox:checked ~ .sidebar {
 padding-top: 0;
 }
 .menu {
 display: flex;
 }
}
Once the links are laid out on a single line as a nav bar, it would be nice to stretch them across the full width of the viewport, with equal spaces in between. I can do this by setting justify-content to space-between (with text-align:center as a simple fallback for non-flexbox-supporting browsers).
@media (min-width: 70em) {
 ...
 .menu {
 display: flex;
 justify-content: space-between;
 text-align: center;
 }
}
[image: The links are equally spaced across the width of their container.]
The links are equally spaced across the width of their container.
Note that this is not stretching the links in the menu themselves, as the flex property or display:table-cell would do, but rather it stretches out all the extra space in between the links to distribute it equally across the line. I can’t get equal spaces between items using display:table-cell, even if I set table-layout:fixed, because that only makes each cell equal in width, regardless of its content. If the cells have different amounts of text in them, that means that the gaps inside the cells will vary, too.
Let me show you what I mean. Here’s the table-layout version of our full-width nav bar:
.menu {
 display: table;
 table-layout: fixed;
 width: 100%
}
.menu-item {
 display: table-cell;
 padding: 10px;
 border: 1px solid #5d9fa3;
 text-align: center;
}
With borders on, you can see that each link is of equal width, so they look equally spaced (see the upper part of the image below). Turn borders off, however, and you’ll see the spaces between the end of one link’s text and the start of the next are not equal in width (see the lower part of the image below). Flexbox’s justify-content property fixes this unattractive little annoyance for us.
[image: With borders on, you can see that each link is of equal width, so they look equally spaced.]

[image: Turn borders off, and you’ll see the spaces between the end of one link’s text and the start of the next are not equal in width.]
Using table-layout:fixed on the nav makes each link equal in width, but that doesn’t mean that the links’ text blocks are equally spaced.
Combining Alignment Properties
You can combine multiple flexbox alignment properties to get more fancy. Let’s say you have an article heading component that includes a photo, title, category, and date (you may also use this pattern on a blog post heading, blog comment, or e-commerce product listing).
<header class="article-header">
 <figure class="article-header-image">
 </figure>
 <section class="article-header-text">
 <h2 class="article-title">Another School-free Snow Day for Hillsborough Kids</h2>
 Weather
 28 January 2015
 </section>
</header>
At narrow widths, you want the photo full-width, followed by the title on its own line and the category and date on a line below, pinned to opposite sides. At wider widths, the photo will go on the left, and, just to make this a good challenge, you need the category and date to be aligned with each other on the baselines of their text, but the whole line to be aligned with the bottom of the photo.
[image: The starting point of the article header, before adding any layout CSS]
The starting point of the article header, before adding any layout CSS.
[image: The narrow-screen article header layout we’re going for.]
The narrow-screen article header layout we’re going for.
[image: The widescreen version of the article header layout.]
The widescreen version of the article header layout.
There are a couple of ways you could tackle this with flexbox, but I think the most straightforward is to use flex-wrap and row orientation on the wrapper for the photo and text block. With smart flex-basis values (essentially minimum widths here), this method lets these two items stack on narrow screens and move side by side on wider screens — without using a media query. I’ll also adjust the margins and padding so there’s a gap to the right of the photo only when it is on the left of the text block, not on its own line.
.article-header {
 display: flex;
 flex-wrap: wrap;
 margin-left: -20px;
}
.article-header-image {
 flex: 1 1 320px;
 padding-left: 20px;
}
.article-header-text {
 flex: 1 1 20em;
 padding-left: 20px;
}
[image: With flexbox added, the layout switches to two columns on wider screens without a media query.]
With flexbox added, the layout switches to two columns on wider screens without a media query.
Now I need to turn the text block itself into its own flex layout. I want the three items inside to wrap as needed, so I’ll make the whole text block a multi-line flex container with horizontal flow. Giving the title a flex-basis value of 100% makes it take up a full line by itself, leaving the following two flex items (category and date) to sit beside each other on the next line.
.article-header-text {
 display: flex;
 flex-wrap: wrap;
 flex: 1 1 20em;
 padding-left: 20px;
}
.article-title {
 flex: 1 1 100%;
}
Since the category and date are horizontal flex items, the vertical axis is their cross axis. That means align-items will affect their vertical alignment and justify-content will affect their horizontal alignment. I want them vertically aligned on their baselines.
.article-header-text {
 display: flex;
 flex-wrap: wrap;
 align-items: baseline;
 flex: 1 1 20em;
 padding-left: 20px;
}
For their horizontal alignment, I want one on the left and one on the right. Since justify-content:space-between moves the first flex item to the start of the line and the last to the end before equally distributing the remaining space in between, it’s the perfect tool for pinning two items to opposite ends of their line.
.article-header-text {
 display: flex;
 flex-wrap: wrap;
 align-items: baseline;
 justify-content: space-between;
 flex: 1 1 20em;
 padding-left: 20px;
}
Without flexbox, I could instead use display:table-cell to pin them to opposite sides, but then they won’t wrap if the viewport is too narrow, or content too long, to fit both on the same line. Floating them in opposite directions will let them wrap if needed, but then I’ll end up with a weird mismatch between the alignment when they go to two lines. Flexbox allows them to display under each other, neatly aligned on the left, when the space requires them to wrap.
[image: Using floating or inline-block, the date stays right-aligned when it wraps to a second line, which looks awkward.]
Using floating or inline-block, the date stays right-aligned when it wraps to a second line, which looks awkward.
[image: Using justify-content or the flex property, the date wraps to the left side under the category, which looks a lot more natural.]
Using justify-content or the flex property, the date wraps to the left side under the category, which looks a lot more natural.
Finally, to move the line containing the category and date down to the bottom of the image, I’ll set align-content to space-between to move the first line to the top and the last line to the bottom. This is so much better than absolute positioning, because if the content is taller than the image, nothing overlaps — it just goes back to the normal alignment, where the second line follows immediately after the first. The align-content property only kicks in when there’s extra height in the block that can be distributed between the lines.
.article-header-text {
 display: flex;
 flex-wrap: wrap;
 align-items: baseline; /* items’ vertical alignment */
 justify-content: space-between; /* items’ horizontal alignment */
 align-content: space-between; /* lines’ vertical alignment */
 flex: 1 1 20em;
 padding-left: 20px;
}
[image: When there’s no extra height in the text block, align-content does nothing, and you get normal line stacking.]
When there’s no extra height in the text block, align-content does nothing, and you get normal line stacking.
[image: Once there’s extra height available, align-content: space-between places it between the two lines, pushing the second line to the bottom.]
Once there’s extra height available, align-content: space-between places it between the two lines, pushing the second line to the bottom.
Each of these flexbox additions tweaks alignment in a small way, but taken together the layout is much more responsive to the viewport size and text length, allowing the content to wrap more elegantly and remain more readable in different circumstances.
Magical Margins
In addition to these flexbox alignment properties, there’s another small detail of how flexbox works that can be a big help in aligning content. Flexbox redefines how margin:auto works. If you set a margin in the main axis to auto, it will take up all the remaining space left in that line. It’s great for pinning items without having to resort to absolute positioning.
Returning to the nav bar example, let’s say at wide sizes you want a logo to sit in the middle of the nav bar, with half the links on the left and half on the right. Most people would cheat and break the list of links into two elements. But you’re not a cheater! You’re going to do this right, just like your mama taught you.
Each link in the nav bar is already a horizontal flex item, thanks to flex-direction:row on their container. But none of the links have been set to actually flex their widths. That means each is only as wide as its text, and with justify-content:space-between removed, that leaves a bunch of extra room on the line after the last link.
[image: The starting point of the horizontal nav bar, before being split on the left and right sides of the logo.]
The starting point of the horizontal nav bar, before being split on the left and right sides of the logo.
To move that extra room in between the News and Events links, just give the Events link (the fourth link) margin-left:auto. That moves all the extra space on the line to the left side of Events, effectively pushing it and all the content that follows it as far right as they can go.
.nav-item:nth-child(4) {
 margin-left: auto;
}
[image: With margin-left:auto on the fourth link, all the extra space on the line is devoted to its left margin.]
With margin-left:auto on the fourth link, all the extra space on the line is devoted to its left margin.
This works because the main axis is horizontal and the auto margin is also along the horizontal axis.
Now the nav bar is visually divided into two pieces, so all that’s left is to move the logo into the gap. There are a few ways you could do this, but I think the simplest is to center the logo and then shift the nav bar up around it using a negative top margin.
.logo {
 text-align: center;
}
.menu {
 margin: -40px 0 40px 0;
}
[image: The final nav has the appearance of being split in two, but it’s still a unified ul in the HTML.]
The final nav has the appearance of being split in two, but it’s still a unified in the HTML.
Thanks to flexbox, this nav bar can undergo several layout changes at different viewport sizes without much trouble.
Reordering Boxes
A slightly more complex (and perhaps cooler) way to get the logo in the middle of the list of links is to move it there with the flexbox order property.
The order property specifies the order in which browsers lay out flex items in their container. You can think of it like assigning the items a position number in a line. By default, all flex items are in position zero, and since they’re in the same position they simply follow the source order. But, if sibling flex items have different order values from each other, browsers will lay them out in ascending order of those values.
To use order on the nav bar, the logo needs to become a sibling flex item of the links; in other words, it has to go in the too. I think this is fine, semantically-speaking, as the logo is functioning as a home link.
<nav role="navigation">
 <ul class="menu">
 <li class="logo menu-item">
 <li class="menu-item">Publications
 <li class="menu-item">Shop
 <li class="menu-item">News
 <li class="menu-item">Events
 <li class="menu-item">Your Account
 <li class="menu-item">Contact Us

</nav>
[image: The logo is the first item in the list in the HTML.]
The logo is the first item in the list in the HTML.
Now I can divide up the nav bar into order groups. The first three text links need to come first, so they’ll need the lowest order value; I’ll just keep them with the default of 0. The logo needs to come next, so it gets the next highest order value, 1. The last three text links need to come after the logo, so they get the next highest order value, 2.
.menu-item {
 order: 0; /* default */
}
.logo {
 order: 1;
}
.menu-item:nth-child(n+5) {
 order: 2;
}
This does indeed move the logo into the middle of the list, but I haven’t added the auto margin to one of the links to split the nav bar at that spot. I can’t simply add the margin to the fourth text link, as I did in the last nav bar example, because with every last bit of extra space on the line to its left, the logo will be stuck with the first three links on the left side, rather than in the middle.
[image: With margin-left:auto on the fourth link, all of the extra space in the line goes to its left, leaving the logo squished on the left side.]
With margin-left:auto on the fourth link, all of the extra space in the line goes to its left, leaving the logo squished on the left side.
To fix this, I can use two auto margins and browsers will simply divide the extra space on the line evenly between the two items with those margins.
.logo {
 order: 1;
 margin-left: auto;
}
.menu-item:nth-child(5) {
 margin-left: auto;
}
[image: Half the extra space goes on the left side of the logo, half on the left side of the Events link, and, therefore, the logo is moved to the center.]
Half the extra space goes on the left side of the logo, half on the left side of the Events link, and, therefore, the logo is moved to the center.
A Solution for RWD’s Stacking Order Problem?
Not being tied to source order any more makes responsive layout so much easier. Sometimes, the order you want your content to stack in vertically on narrow screens is not the same order that you need the boxes to be in to make floating or display:table-cell work for wider screen layouts.
Using a very simple example, let’s say you want your content to stack in the order of: header, main, sidebar, subnav, and footer on mobile. That needs to be your source order, then. But, perhaps on a wider screen layout, you need either the subnav or sidebar element (or both) to come before the main element, not after it, so that you can float it to the side of the main box and create a three-column layout.
[image: We want Main to come before Sidebar and Subnav when narrow, but be in between them when wide.]

[image: We want Main to come before Sidebar and Subnav when narrow, but be in between them when wide.]
We want Main to come before Sidebar and Subnav when narrow, but be in between them when wide.
Since this is a simple example, this source order problem can be worked around in various ways, such as using negative margins with floats. But most layouts in the real world are far from this simple and can require quite tricky maneuvers to make a single source order work for all layouts across all viewports.
The flexbox order property affords more source-order independence, making this problem a lot easier to solve. You can pick the source order that makes the most sense for your content, from a semantic and accessibility point of view, and then adjust the visual order that the boxes appear in as needed.
Since flexbox currently has better support on mobile than on desktop browsers, and because simple mobile layouts are more suited to flexbox, I’d advise placing your major content blocks in the source order that’s needed for the wide layout — provided it’s a logical, accessible order — and continuing to use non-flexbox layout methods there. The desktop layout will just use the default HTML source order. But on mobile, you can turn to flexbox and use the order property to override the source order and get the stacking order you’re after.
Using the simple three-column layout example again, here’s how I could structure the HTML to make the desktop layout easy to create with floats or display:table-cell.
<body class="container">
 <header class="header">Header</header>
 <nav class="subnav" role="navigation">Subnav</nav>
 <main class="main" role="main">Main</main>
 <aside class="sidebar" role="complementary">Sidebar</aside>
 <footer class="footer">Footer</footer>
</body>
In the mobile styles outside the first media query, I can turn on flexbox, then simply turn it off in the widescreen media query.
.container {
 display: flex;
 flex-direction: column;
}
@media (min-width:50em) {
 .container {
 display: block;
 }
}
With flexbox on for mobile, there are a couple of ways I could use the order property to rearrange the default stacking order. One would be to explicitly assign each box a position number.
.header { order: 0; }
.main { order: 1; }
.sidebar { order: 2; }
.subnav { order: 3; }
.footer { order: 4; }
I don’t think this is wise to do, however. What if I later add another box to the HTML? I’ll need to renumber all the order values for all the boxes so that I can assign the new one its proper place in line. This is similar to how people used to use tabindex to give every link and form field an explicit, hard-coded tab-stop position in the tabbing order of a page. It’s inflexible and not very future-proof.
A better approach, I think, is to keep as many items using the default order as possible and only assign order properties to the few items that need to move out of the default order. In this case, it’s really just the subnav box that I need to pull out from its native place line and place lower in the stack. I can keep the header, main and sidebar boxes in this same order by simply keeping them all with the default order value of 0, and assign order:1 just to subnav and footer.
.subnav,
.footer {
 order: 1;
}
Header, main, and sidebar are in the first group, and subnav and footer are in the second group. Since I’ve only assigned two of my five boxes an explicit order, if I later add more boxes, there’s much less chance that I will need to renumber the existing boxes to accommodate them in the stacking order.
Potential Pitfalls with the order Property
Your mind may be spinning with all of the possibilities brought to web layout by being able to move content anywhere, regardless of source order. But before you get too excited, let me point out a few issues with the flexbox order property that might make you think twice about using it widely.
The first issue is that the flexbox order property can only reorder sibling elements — flex items directly within the same flex container. This means that the source order still has some hold on your visual order. You can’t use the flexbox order property to move content literally anywhere; it’s limited and more suited to smaller layout shifts. Other CSS layout modules like Grid Layout are going to do the heavy lifting when it comes to visual reordering.
As an example of the sibling restriction on flexbox reordering, consider a flex container with four child items. You could rearrange these four with one another to your heart’s content, but you couldn’t pull out the sidebar-item-highlight block from within <aside> and place it above <main> using order:-1 or any value. The sidebar-item-highlight block is simply not a sibling of <main>.
<div class="flex-container">
 <header>...</header>
 <main>...</main>
 <aside>
 <div class="sidebar-item">...</div>
 <div class="sidebar-item sidebar-item-highlight">...</div>
 <div class="sidebar-item">...</div>
 </aside>
 <footer>...</footer>
</div>
Even if <aside> is a flex container too, the order count basically starts over within each flex container. Only the children of that flex container can be reordered in relation to one another.
Even when you don’t have a sibling issue and can achieve the layout shift you’re after using order, you’ll have to be very careful to make sure that the layout degrades well in older browsers without flexbox support. When you use flexbox to center some content vertically, for instance, it’s not a big deal if the small minority of users with old browsers see it top-aligned instead: it’s purely aesthetic. But if you use flexbox to rearrange entire sections of content, it could potentially be confusing or less usable if the content appears in a different order from the one you intended; order is often tied to meaning, not just aesthetics. You’ll need to make sure that both orders — the default HTML one and the visual one you’ve created with flexbox — are logical and usable, so that users both with and without flexbox all have a good experience.
This can be tricky to achieve when you factor in accessibility. Flexbox only changes the order visually, but screen readers still read out content in its HTML order. Plus, most browsers keep the tabbing order based on the HTML, not the visual order. (The exception to this, currently, is Firefox, which does change the tabbing order to match the visual order, although this violates the spec.) That means that sighted non-mouse users, such as people who use a keyboard or other device because of mobility limitations, might have a really confusing time trying to navigate through the page, depending on how you’ve used the order property.
For instance, in the earlier example where I moved the subnav <div> above the footer, a user tabbing through the page would first go through all the links in the header, then jump down to the subnav, then jump back up to the main and sidebar sections, and then jump back down to the footer. Seeing the focus outline jump around the page in a seemingly arbitrary way as you tab through the content would be a very confusing and frustrating experience.
[image: The tab order would follow this illogical path since I’ve moved the divs only visually, not in the HTML.]
The tab order would follow this illogical path since I’ve moved the <div>s only visually, not in the HTML.
This layout is just for narrow mobile screens, where tabbing isn’t used nearly as much, which minimizes the problem a lot. But we can’t consider it a non-issue and write it off entirely. People do use keyboards on mobile devices, as well as other input devices that simulate tabbing. You still need to ensure keyboard navigation is usable on mobile sites.
These accessibility issues are why the spec states explicitly that you must use the order property only for visual, not logical, reordering of content.
Using order Progressively and Accessibly
I probably seem like a complete tease right now. A wet blanket, ruining your beautiful dreams of being able to move content around the page willy-nilly, without care or consequence.
But don’t despair. It is possible to use order in a way that doesn’t affect accessibility and degrades gracefully in old browsers. Let me give you one example of using order in a progressive enhancement sort of way.
Here’s a recipe, with its photo placed in the middle of the text so that on wider screens I can float it next to the ingredients list. But perhaps on the single-column narrow view I don’t want the photo above the ingredients. I could use the order property to move the photo above the recipe title on mobile only.
[image: Stacking order recipe]
I need to place the photo before the ingredients list to float it to the right of the list (see image on the left). The default stacking order based on the HTML order, with the photo before the ingredients list, is shown in the narrow mobile view before flexbox is added (see image on the right). (Recipe and photo courtesy of Della Cucina Povera12.)
In the styles outside any media queries, I set flex-direction to column to stack all the pieces of the recipe in a single column, and then set the order value of the image to -1. All the other flex items inside the recipe container have the default order value of 0. -1 is smaller, so the image will come first; that is, move up to the top of the stack.
.recipe {
 display: flex;
 flex-direction: column;
}
.recipe-photo {
 order: -1;
}
.recipe-photo img {
 width: 100%;
}
[image: The photo has the lowest order value, so it is placed before its siblings and displays before all the text.]
The photo has the lowest order value, so it is placed before its siblings and displays before all the text.
In the wide media query for the desktop view, I simply turn off flexbox by setting the recipe’s display back to block. That puts the image back in normal flow order, where I can then float it to the right of the ingredients list.
@media screen and (min-width:800px) {
 .recipe {
 display: block;
 }
 .recipe-photo {
 float: right;
 width: 50%;
 }
}
There’s no need to worry about desktop browser support for flexbox since I’m not using it there, and any mobile browsers that don’t support flexbox will simply see the image before the ingredients — a little different in appearance, but not wrong or confusing. Plus, there are no accessibility problems in moving the photo because the reordered content doesn’t have any text or links within it. Both reading order and tabbing order will be the same with and without flexbox. This is a visual enhancement that doesn’t hurt user agents that can’t interpret it.
You can use the order property in this same progressive way on articles, product listings and other similar page components that include decorative content that can appear in multiple places and still make sense. It’s fine to have text within the reordered content as long as the text makes sense when read in both the HTML order and the visual flexbox order, such as a photo caption that could be read before or after an introductory paragraph. And if you can avoid having any links or form fields in the reordered content, your accessibility will be even better.
Other Ways to Change Visual Order
We’ve made it through all the flexbox properties now (yay!), but before we wrap up, I wanted to mention that it’s also possible to affect the visual order of your content using the flex-direction and flex-wrap properties that I covered near the start of the chapter. Both of these have reverse values which place the content in the opposite direction than the default flow.
For instance, the Guardian’s responsive website13 uses flex-direction:row-reverse in its widescreen layout to place story blocks side by side, but run them from right to left instead of left to right (see below). This creates a different visual order from the one you see on narrow screens, where the content stacks in its default HTML order; the topmost content doesn’t become the farthest left content as you might expect.
[image: The Guardian widescreen and narrow screen layouts in comparison]
The Guardian widescreen layout (see left) uses flex-direction:row-reverse within the main story and on the bottom row to place blocks from right to left. The narrow layout (see right) keeps the content in the default HTML order. For instance, the main story photo comes before its text block, not after it, as you might expect from looking at the widescreen layout.
You face the same accessibility issues when reordering with flex-direction and flex-wrap as you do with the order property, but they give you a couple of other options for manipulating visual placement in a simple way.
Handling Browser Variants
Near the start of this chapter, I mentioned that flexbox has great browser support. It’s just that different browsers support different versions. Before flexbox became a candidate recommendation in 2012, its syntax went through a lot of changes, so the properties and values changed names a couple of times. Fortunately, most of the behavior stayed the same, so for the most part you can feed the different property and value names without a problem.
If you want to, of course. Here are the approaches you could choose to take:
•Use only the non-prefixed, current, standard syntax. This is the purest approach, but browser-prefixed properties are perfectly fine to use, provided you do so before the non-prefixed properties. I don’t recommend this approach.
•Use the non-prefixed and browser-prefixed versions of the standard syntax. This is a safe approach, and it’s what you’ll need to do if you want to add Safari support on both desktop and iOS, which I’m guessing you do.
•Use the above plus the -ms- prefixed 2011/2012 syntax. This will get you support in IE 10, so this is a pretty good idea.
•Use the above plus the -webkit- prefixed 2009 syntax. This gives you older versions of Safari and the Android browser. However, it’s a lot slower to render than the current flexbox syntax.14 Plus, the browsers it benefits no longer have much market share. Your audience may vary, of course, so the choice is up to you. But, personally, I don’t tend to add this syntax.
	Current syntax, no prefixes	Current syntax but browser prefixed	2011/2012 syntax	2009 syntax
	Chrome 29+
Firefox 22+*
IE 11+
IE Mobile 11+
Opera 17+
Opera Mobile 12.1+
Opera Mini 8+
Android 4.4+	Safari 6.1+
iOS Safari 7.1+
Blackberry 10+
	IE 10
IE Mobile 10	Safari 3.1-6
iOS Safari 3.2-6.1
Android 2.1-4.3

*Firefox 22–27 did not support the flex-wrap and flex-flow properties.

It can be hard to keep track of which properties from which syntaxes correspond, and adding the various browser variants can be messy and time-consuming. If you can avoid doing it manually, you’ll save yourself a lot of confusion and errors. There are lots of Sass and LESS flexbox mixins that can create all the variants for you, or you can customize them to add just the variants you want.
If you’re using Sass, check out https://github.com/mastastealth/sass-flex-mixin15, https://gist.github.com/cimmanon/446147016, or https://github.com/thoughtbot/bourbon/blob/master/app/assets/stylesheets/css3/_flex-box.scss17. If you’re using LESS, check out https://github.com/annebosman/FlexboxLess18.

Another tool you can use to add prefixes is the Autoprefixer library that, naturally, adds browser prefixes, including various flexbox versions. It uses the Can I Use database to determine which prefixes are needed, and can be customized to target specific browsers. Autoprefixer can be used in a wide variety of development environments; go to https://github.com/postcss/autoprefixer#usage19 to learn how to use it in conjunction with your tool of choice.
A potential downside to using Autoprefixer for flexbox is that you can’t prevent it from adding just the 2009 syntax, for instance. If you make it exclude the browsers that use the 2009 syntax, it will exclude them from all prefixed CSS properties, not just flexbox properties. To work around this, you could write a PostCSS plugin to remove the 2009 properties after Autoprefixer does its work; see https://github.com/postcss/postcss20.

The bottom line is this: go ahead and use whichever variants you want, or none of them. Throughout this chapter, I’ve shown you only the non-prefixed properties, but this was just to keep the CSS I showed you from being super long and hard to read and understand. That doesn’t mean I’m saying you shouldn’t use any prefixed versions in the real world. Just as you need to decide whether flexbox is appropriate for the layout task you want to complete, you need to decide which browser variants you’re going to use for each individual project.
Using Flexbox With Fallbacks
Until browser support for flexbox becomes universal, or unless you’re working on a site for a specific browser, I recommend using flexbox for progressive enhancement, like the recipe photo example. Your layout should be clear, usable and (hopefully) attractive without flexbox so that users of non-supporting browsers still have a good experience; then you can layer flexbox on top to improve responsiveness even further. So how do you handle the layout for the non-supporting browsers?
I don’t have a single answer to this question. There’s currently no flexbox polyfill that will magically make all your flexbox effects happen with JavaScript instead of CSS. But there are a few ways to provide a good fallback experience for non-supporting browsers, and the one you choose will depend on the way you’re using flexbox.
One Approach: Do Nothing
The simplest fallback approach is to do nothing for non-supporting browsers. If I’m using flexbox only for cosmetic enhancements, not essential layout, I think it’s perfectly fine for different browsers to display different things.
That’s already happening anyway. I don’t provide any fallbacks for border-radius, box-shadow, text-shadow, gradients, multi-columns, transitions, or any number of other aesthetic enhancements I can add with CSS3 — you probably don’t either. Most folks in our industry have accepted that all browsers and devices are going to display our webpages somewhat differently no matter how hard we try for things to look identical between browsers. When you’re using flexbox just to fine-tune alignment, change a photo’s placement, or other purely cosmetic enhancements, it’s completely acceptable and sensible to provide no fallback to attempt to imitate the effect in old browsers.
For instance, if I’m using flexbox just to nicely center a couple of items together, it’s not a big deal if instead they’re top-aligned in IE7, 8 and 9. This appearance will be different, but it’s not wrong; it won’t look broken, and it won’t provide a bad experience for users of those browsers. This use of flexbox is progressive enhancement, pure and simple.
Combining Flexbox with Alternative Layout Methods
If you’re using flexbox to control layout, meaning the placement and sizing of items, you might decide this is a more essential part of the design and want to provide a fallback. In this case, you can use any layout CSS you normally would as your flexbox fallback, because most of the time both layout methods can coexist.
Using display:table-cell is a great alternative to flexbox because it affects boxes in much the same way that flexbox does. For instance, it can do equal-height columns, make boxes stretch and shrink to fit their content, vertically center content, and make a single box on a line take up all the remaining space after the fixed-width boxes have been sized.
However, one of the big differences between flexbox and table-cell display is that table-cell doesn’t allow boxes to wrap when needed. At narrow widths, content in adjacent “cells” may overflow and overlap one another. Plus, IE7 doesn’t support display:table-cell, so it won’t work as a fallback for that browser, if you still support it.
If this is a possibility for your content and you need wrapping, inline-block or float are other good fallbacks for flexbox layout. Just as with display:table-cell, you can use either of these layout methods at the same time as flexbox.
In the article header example we looked at earlier, I can use both table-cell and inline-block to control the layout before adding flexbox as a progressive enhancement. I’ll use table-cell to lay out the image and text block beside each other; and then inline-block inside the text block, since the three pieces of content in there have to be able to wrap if needed.
@media (min-width: 70em) {
 .article-header {
 display: table;
 display: flex;
 width: 100%;
 }
 .article-header-image {
 display: table-cell;
 flex: 1 0 auto;
 padding-right: 10px;
 }
 .article-header-image img {
 width: auto;
 }
 .article-header-text {
 display: table-cell;
 display: flex;
 align-items: baseline;
 justify-content: space-between;
 align-content: space-between;
 width: 100%;
 vertical-align: middle;
 }
 .article-title {
 flex: 1 1 100%;
 }
 .article-category {
 display: inline-block;
 }
 .article-date {
 display: inline-block;
 text-align: right;
 }
}
See how I have both table and flex display values on article-header and article-header-text? Both conflicting values can be declared on the same element, because non-supporting browsers just ignore the flex stuff that they don’t understand, and browsers that do understand it use whatever value comes last to override the earlier value.
The same thing happens with display:inline-block and the float and clear properties. When you use both inline-block or floating as well as flexbox on the same element, flexbox overrides them. This means that non-supporting browsers use the inline-block or float positioning; supporting browsers use the flexbox positioning; and neither layout method needs to be hidden from either set of browsers: they don’t conflict — they coexist.
There are a few other standard CSS properties that get overridden or work differently in conjunction with flexbox; see http://www.w3.org/TR/css3-flexbox/#flex-containers21 for the brief list.

But, there are a few issues you may run into when you combine floating with flexbox.
First, if you’re using the 2009 flexbox syntax for older versions of Safari and the Android browser (by setting display to -webkit-box rather than -webkit-flex), those browsers exhibit a bug where a flex item that is also floated will disappear. Luckily, the fix is simple: just add position:relative to the floated flex item to make it reappear. (Illogical, yes, but that’s a bug fix for you!)
Second, some float containment methods can clash with certain flexbox effects. For instance, the classic clearfix class adds generated content at the end of the parent of the float, and this new piece of content will be counted as a flex item just like the other boxes within that parent. Since it has zero width and height this is normally not a problem, but if you’re using the justify-content property to equally distribute the flex items, this invisible flex item gets distributed too and takes up space. You may want to avoid using the clearfix class when using flexbox in conjunction with your floats, or move it to another container element without display:flex on it.
[image: The invisible piece of content that clearfix adds is at the right edge of the nav bar after Contact Us, thanks to justify-content:space-between pushing it to the end of the line. It takes up no space itself, but since it’s a flex item it gets aligned like the rest of them and ends up with space around it, leaving a big gap and making the nav not appear full-width.]
The invisible piece of content that clearfix adds is at the right edge of the nav bar after Contact Us, thanks to justify-content:space-between pushing it to the end of the line. It takes up no space itself, but since it’s a flex item it gets aligned like the rest of them and ends up with space around it, leaving a big gap and making the nav not appear full-width.
A third issue is that when you float you often give the content following the float a large side margin to get it out of the way. But flex items don’t need this margin to sit side by side, so adding it only introduces a huge gap between flex items. This is when you need to break out the Modernizr feature-detection script22 and have it add the flexbox-supporting or non-supporting classes to the opening <html> element of your page. Then you can use these classes to add the margin only when flexbox isn’t supported and floating is used instead.
.container {
 display: -webkit-box;
 display: flex;
}
.sidebar {
 float: left;
 position: relative;
 width: 300px;
}
.no-flexbox .main-content {
 margin-left: 300px;
}
Most of the time, you don’t need Modernizr to separate out the flexbox and non-flexbox fallback styles, as flexbox can just override in browsers that understand it, but sometimes you do need to isolate certain properties, and luckily Modernizr makes that easy.
The main CSS layout method that doesn’t work in conjunction with flexbox is absolute positioning. Flexbox doesn’t override it, so if you’re using it as your non-flexbox starter styles, you’ll need to isolate it with Modernizr. See http://www.w3.org/TR/css3-flexbox/#abspos-items23 for the details.

Let me give you one final example of using flexbox as progressive enhancement on top of other layout methods, but this time across the entire page layout. My friend Chris Weiher’s existing website, Watch Me Work24, didn’t have a mobile version and wasn’t responsive. He told me that he wanted the mobile version of the site to have live video streams at the top of the page so that users could get viewing right away — the main purpose of the site.
I knew I could do this with responsive web design, rather than creating a separate mobile site, so I first created a wireframe of his existing desktop design with live streams added to the bottom of the page. Then, in the narrow mobile version, I moved the live streams to the very top, even over the hero banner.
[image: The existing design of Watch Me Work, with no live streams section and no narrow mobile version of the layout.]
The existing design of Watch Me Work, with no live streams section and no narrow mobile version of the layout (see left). My widescreen wireframe of the revised layout, with a Live Streams section at the bottom so I could make it available for the mobile version (see right).
[image: My narrow-screen wireframe reorders the page sections to place Live Streams at the top.]
My narrow-screen wireframe reorders the page sections to place Live Streams at the top.
In both versions, the layout was pretty simple — a series of stacked bars — so I could rely on the default block stacking of <div>s to lay out the major page sections. I simply needed to use the order property to move the live streams section up from its native HTML position at the end of the page on narrow screens.
.watch-me-work {
 display: flex;
}
.header {
 order: 0;
}
.section {
 order: 2; /* all of the sections, including Live Streams */
}
.section-live {
 order: 1; /* override to move Live Streams above others */
}
@media (min-width: 40em) {
 .section {
 order: 0; /* back to default source order */
 }
}
That was all the flexbox I needed for the overall layout of the major page sections. I then used flexbox (on top of simpler layout CSS) inside these sections to size and align the chunks of content. For instance, to put the video stream blocks (inside the featured and live sections) beside one another in the wider layout, I used floating as a starting layout style, but added flexbox as well so I could make them have equal height. The flex value simply overrides the width value that the floating layout will use.
.stream-list {
 display: flex;
 flex-direction: column;
}
@media (min-width: 40em) {
 .stream-list {
 flex-direction: row;
 }
 .stream-item {
 float: left;
 width: 32%;
 margin-right: 2%;
 }
 .flexbox .stream-item {
 flex: 1 1 33%;
 margin-right: 20px;
 }
 .stream-item:last-child {
 margin-right: 0;
 }
}
[image: Without flexbox, the stream items are not equal height across their row, but they still look fine as a basic style for older browsers.]
Without flexbox, the stream items are not equal height across their row, but they still look fine as a basic style for older browsers.
With the stream items having equal height across their row on wide screens, I could then pin the date, viewers and button to the bottom of each block, making them align with one another across the row. To do this, I first needed to turn each stream item into a flex container itself and stack the video (stream-video) on top of the gray text block (stream-info). I made the video not flex so stream-info could take up the rest of the height inside stream-item.
.stream-item {
 display: flex;
 flex-direction: column;
}
.stream-video {
 flex: 0 0 auto;
}
.stream-info {
 flex: 1 1 auto;
}
[image: Using flex on the gray box within each stream item makes them stretch to fill the full height, so you can see the stream items are of equal height across the row.]
Using flex on the gray box within each stream item makes them stretch to fill the full height, so you can see the stream items are of equal height across the row.
Next, I needed the children of stream-info to be flex items too, so I could use the new auto margin pinning behavior on them. That meant stream-info needed to be a flex container with vertically stacked children.
.stream-info {
 display: flex;
 flex-direction: column;
 flex: 1 1 auto;
}
Finally, I added an auto margin on the top of the wrapper for the date and viewers text (stream-meta), pushing it and everything after it to the bottom of its container. I also made it a flex container so I could use justify-content to push its children, date, and viewers to opposite sides of their line.
.stream-meta {
 display: flex;
 justify-content: space-between;
 margin: auto 0 10px 0;
}
And I didn’t have to do anything to make the button fill the width of its container — it did that by default thanks to align-items:stretch on stream-info, which makes flex items’ widths, not heights, stretch when the flex container is set to vertical alignment.
[image: The date, viewers, and button are now pinned to the bottom of their stream item and full-width within it.]
The date, viewers, and button are now pinned to the bottom of their stream item and full-width within it.
In the applications logo list, I used inline-block and text-align:center to lay out the logos in the middle of a single line, but I added flexbox on top to make the logos stretch to fill the line.
.app-list {
 display: flex;
 text-align: center;
}
.app-item {
 display: inline-block;
 flex: 1 1 auto;
 margin-right: 20px;
 text-align: center;
}
.app-item:last-child {
 margin-right: 0;
}
.app-item img {
 max-width: 100%;
}
[image: The applications list without flexbox.]

[image: The applications list with flexbox.]
The applications list without flexbox (top) and with flexbox (bottom).
The page is full of small flexbox enhancements like this that make the layout more responsive to the space available, helping it to look more polished in between the breakpoints.
Conclusion
Flexbox is not necessarily a replacement for all the other layout mechanisms that we've been using for a while but rather is an addition to our box of tools to help create responsive layouts. Try layering flexbox on top of simpler layout CSS to enhance the sizing, alignment and ordering of content within your UI components. We’ve looked at real-world examples of components that can be made more responsive, more easily, thanks to flexbox’s powerful and flexible properties.
We’ve looked at lots of code along the way. But using flexbox is about a lot more than memorizing new syntax. It’s about shifting the way you think about web layout problems and visualize their solutions. When I made the switch from table layout to float layout, there was a certain point where I just started thinking in floats, and table layout actually became harder for me because I no longer thought about web layout from that perspective and within its limitations.
You can experience that same sort of mental shift with flexbox today. To start thinking from a direction-neutral flexbox point of view, you just have to use it. So play around with it! The more you use it, the more easily you’ll be able to understand how to manipulate layout with it, and the more ideas you’ll gain of how flexbox can be used to enhance your daily work.

About the Author
[image: Zoe Gillenwater]
Zoe is a web designer and developer specializing in responsive design, UX and accessibility. She loves creating sites that work for as many people and devices as possible, and she loves achieving it with the shiny new flexbox. Zoe currently works as a senior designer for Booking.com, living in Amsterdam, but she is originally from the Chicago area in the USA. She’s got a fantastic husband and two adorable and energetic little kids.
About the Reviewer
[image: James Williamson]
James Williamson is a senior author for lynda.com and an Adobe Certified Instructor. He has many years of web, print, and digital video experience, and has been a featured speaker at Flashforward as well as a regular speaker at Adobe MAX. James also blogs (infrequently) about all things web at his site, Simple Primate, which can be found at www.simpleprimate.com.

—
1.http://www.w3.org/TR/css3-flexbox/
2.http://caniuse.com/#feat=flexbox
3.http://www.w3.org/TR/css-grid-1/
4.http://www.w3.org/TR/css3-multicol/
5.http://caniuse.com/#feat=flexbox
6.http://www.barrelny.com/blog/text-align-justify-and-rwd/
7.http://www.w3.org/TR/css3-flexbox/#abspos-items
8.http://css-tricks.com/almanac/selectors/c/checked/
9.http://css-tricks.com/the-checkbox-hack/
10.http://timpietrusky.com/advanced-checkbox-hack
11.http://osvaldas.info/flexbox-based-responsive-equal-height-blocks-with-javascript-fallback
12.http://dellacucinapovera.com/
13.http://www.theguardian.com/
14.http://updates.html5rocks.com/2013/10/Flexbox-layout-isn-t-slow
15.https://github.com/mastastealth/sass-flex-mixin
16.https://gist.github.com/cimmanon/4461470
17.https://github.com/thoughtbot/bourbon/blob/master/app/assets/stylesheets/css3/_flex-box.scss
18.https://github.com/annebosman/FlexboxLess
19.https://github.com/postcss/autoprefixer#usage
20.https://github.com/postcss/postcss
21.http://www.w3.org/TR/css3-flexbox/#flex-containers
22.http://modernizr.com/
23.http://www.w3.org/TR/css3-flexbox/#abspos-items
24.http://www.watchmework.com/

[image: Back Cover]
Table Of Contents
Imprint
A Responsive Way Forward
by Vitaly Friedman
The Modern Responsive Designer’s Workflow
by Dan Mall
Responsive Process
by Ben Callahan
Responsive Design Patterns And Components
by Vitaly Friedman
Content Choreography In RWD
by Eileen Webb
Mastering SVG For Responsive Web Design
by Sara Soueidan
Building Advanced Responsive Modules With Flexbox
by Zoe M. Gillenwater

OEBPS/Images/image00345.gif
Images Property Info Venues Wedding Planning Packages
Image Property Image Room Name Wedding Coordinator Package Name
Caption Wedding Description Room Descrption Wedding Coord Conta Price
Address Room Proto Descrption/Introduction Price Label
Directions Room Cap/Seating Chart Legal Coordination Descrption
Parking Sctup/Fees Floorplan List of whats included
Property Description Catering
Property Amenties st Services/amenities
Room/Sute
Tex:
Room Reservations Special Services Wedding Booking Vendors Catering
Group Rates Name Policies Category Menus
Room Descrptions Descrption Booking Procedure Vendor Name Packages
Custom Res Pages (OWP) Process Deadiines Website
Honeymoon Deals: Honeymoon Deals Phone number
(depends on deals model) Address

OEBPS/Images/image00346.gif
Section / Field Format Source System Required Numberof Contents Notes
Instances

Venues Y - ‘These could be pulied as references from property data, with wedding-specific
info where appropriate

Room Name Text EPIC Y 1 Name of the room or hotel area available for weddings and receptions

Room Description Text oms Y 1| Wedding-specific description Is there a need for altemate versions of these (like “holiday-themed weddings”,
seasonal descriptions for ski resorts, etc)?

Room Photo Image MDAM Y 1| Wedding-specific photo (decorations, place settings, etc) h

Room Capacity/Seating | Text EPIC Y 1 Wedding-relevant only. No “classroom setup” or other meeting-focused data. The seating is already

Chart broken out by type in EPIC, 50 the pages just shouldn't pull the irrelevant formats.

Floorplan Image cMs N Floorplan of the venue, or the entire hotel grounds Labels must match the room names!

Room Reservations

Group Rates Text MARSHA Y 1 Explanation of group rates policy and process

Room Descriptions | Reference EPIC N | Links to descriptions/photos for rooms available for group booking

Custom Reservation | Boolean oms N 1 I this hotel offers CWPs, this will show a brief explanation of what they | Gould the request be a link to a form?

Pages (CWP) are and how to request one

Honeymoon Deals Reference Deals N @ Links to Honeymoon deals at that property

Packages - Packages as a whole may not be CMS-structured, but rather editorially structured
by having strct guidelines for authors/admins to follow in the CMS,

Package Name Text cMs Y 1 Name of the wedding package

Price Number oms Y 1 Price, either flat-rate or per-person “This would allow for searching across propertes, like “show me all the beach
hotels who have wedding packages less than $15K”.

Price Label List cMs Y 1 “Flat-rate”, “Per person”

Description Text oms N 1 1-2 sentence description of the package, including any limitations (e.g. *at | Limitation could be pulled out nto its own field? Not sure there’s enough

least 50 guests) consistency across properties for that

List of what's included oMs

- Catering Reference oMs N @ | Links to catering menus Only the relevant menus — a wedding breakfast doesn’t need the dinner menu

- Services/amenities | Reference oMs N @ | Links to Spa, Golf, or other relevant service pages Hotebinternal services

- Room/Suite: Reference oMs N @ | Link to included suite or room

-Text Text cMs N | Any other package items May be links (to 3rd party vendors or locations).

OEBPS/Images/image00343.jpeg
Working closely with the Board of Directors, staff, and the
community, Haydée is responsible for sustaining wellness and
recovery programs and initiatives that eliminate stigma and
discrimination. Additionally, she is committed to the overall
growth and success of the mental health movement. Haydée
leads with a vision of wellness and recovery, as PEERS offers
empowering and innovative programs, trainings, and peer
groups.

Professional Background
Combined with 25 years of professional experience working for

foster care system improvements, workforce development,
improving outcomes for transition age youth, and mental health; her passion for this work
comes from her lived experiences as a former homeless and foster youth, struggles with
mental health and wellness, personal commitment to self-reflection and healing, and
being a mommy, abuelita, and multidimensional and multicultural womyn.

Personal Background

Haydée loves spending quality time with her wife, daughter, grandson, family, and close
friends, and especially loves dancing and taking time to conciously connect spiritually.

OEBPS/Images/image00344.jpeg
¥m looking for... [

K
PEERS Home EventCalendar AboutUs

Upcoming Events

WRAP Five Day Orientation
MAY 27-31, 10AM

gma and promoting
sion, and learning,
This orientation provides rining to people

interested in running WRAP groups in thelr
‘own communities.

Berkeley WRAP Group
[EVERY MONDAY, 1 PM

WRAP groups are designed to give
participants the tools for improving their
‘own lives. We focus on wellness and
wholeness rather than iiness and sickness.

OEBPS/Images/image00349.jpeg

OEBPS/Images/image00347.gif
Create Event ©

Events are displayed in the Calendar page and in a block on the homepage, and will be automatically archived after their date
has passed. The calendar is mainly used by members who are already familiar with our work and internal terms.

Event Name *

Spell out your acronyms! Please don't include the name of
the sponsoring organization here.

Teaser Sentence *

Short description of the event. This is displayed in the Upcoming Events
block, but never alongside the main description - so it's OK for it be
repetitive of that field. 110 characters remaining.

Location

Where is this event taking place? When possible, use place names
("County Office of Education”) over street addresses.

When

Human-readable description of the date, like “3rd

Wednesday of each month”.

TOPICS

Select all topics this entry relates to.
If no topics are selected, the entry
will only be displayed in the main
calendar.

Services

Peer Support Groups

) Peer Partner Program
WRAP Groups

) Tobacco Harm Reduction
Telling Your Story
Young Adults

| Empowerment Activities

Transition Age Youth Support

Trainings

OEBPS/Images/image00348.jpeg

OEBPS/Images/image00352.jpeg
Anchor Point

. @

SEASIDE RESORT

OEBPS/Images/image00353.jpeg
PNG: ~66KB SVG: ~123KB

OEBPS/Images/image00350.jpeg
MASTERING SVG
FOR RESPONSIVE
WEB DESIGN

SARA SOUEIDAN

OEBPS/Images/image00351.jpeg
‘\\‘\\“\\\s’
Anchor Point
I % —_—

SEASIDE RESORT

OEBPS/Images/image00334.gif
Event Name *

WRAP Training Level 1

Teaser Sentence *

Introduction to the WRAP process, including training on how to start your own group.

Short description of the event.

Location

6th Floor Conference Room

Where is this event taking place?

EVENT DATE
Date Time
11/20/2015 9:30am

Description *

Styles -

(B I 9

« I @

(@ | [Source |

This training’s focus is to help participants have a better personal understanding of mental health recovery
concepts and how the WRAP process works. We share experiential knowledge, skills, and social learning. You
will learn the steps towards starting your own peer support groups, for young adults as well as adults of all ages.

From this course, participants are eligible for the Seminar Il: WRAP Facilitators Certification Training.|

OEBPS/Images/image00455.jpeg
is a default these days, but we
are all still figuring out just the right process and
techniques to better craft responsive websites. That's
why we have invited respected designers to feature

their practical front-end techniques and patterns,
as well as workarounds used in real-life projects today. Techniques
that you could apply to your websites today, too.

This book won't solve every single issue in your responsive projects,
but it will help you deal with common challenges effectively: front-end
architecture, layout issues and resolution-independent assets.

With a commitment to quality content for the design community.

Published by Smashing Magazine, 2015.

97783945 749272

OEBPS/Images/image00335.gif
Create Event ©

Events are displayed in the Calendar page and in a block on the homepage, and will be automatically archived after their date
has passed. The calendar is mainly used by members who are already familiar with our work and internal terms.

Event Name *

Spell out your acronyms! Please don't include the name of
the sponsoring organization here.

Teaser Sentence *

Short description of the event. This is displayed in the Upcoming Events
block, but never alongside the main description - so it's OK for it be
repetitive of that field. 110 characters remaining.

Location

Where is this event taking place? When possible, use place names
("County Office of Education”) over street addresses.

When

Human-readable description of the date, like “3rd

Wednesday of each month”.

TOPICS

Select all topics this entry relates to.
If no topics are selected, the entry
will only be displayed in the main
calendar.

Services

Peer Support Groups

) Peer Partner Program
WRAP Groups

) Tobacco Harm Reduction
Telling Your Story
Young Adults

| Empowerment Activities

Transition Age Youth Support

Trainings

OEBPS/Images/image00332.gif
Source

November 20, 2015

9:30am - 4pm, 6th Floor Conference Room

This training’s focus is to help participants have a better personal understanding of mental health
recovery concepts and how the WRAP process works. We share experiential knowledge, skills,
and social learning. You will learn the steps towards starting your own peer support groups, for
vouna adults as well as adults of all aces.

body p

OEBPS/Images/image00453.jpeg

OEBPS/Images/image00333.jpeg
WRAP Training Level 1

November 20, 2015 9:30am - 4pm, 6th Floor Conference Room This training’s

focus is to help participants have a better

OEBPS/Images/image00454.jpeg
D
Y

OEBPS/Images/image00338.jpeg
13JUN2015

Latino Empowerment
Project Kickoff

The goal of the Latino Empowerment Project
is to expand WRAP (Wellness Recovery Action
Plan) to the Spanish speaking population in
Alameda County. All of the workshops would
be facilitated in the Spanish language
including written materials

OEBPS/Images/image00339.jpeg
13

JUN
2015

Latino Empowerment Project Kickoff

The goal of the Latino Empowerment Project is to expand WRAP (Wellness
Recovery Action Plan) to the Spanish speaking population in Alameda County.
All of the workshops would be facilitated in the Spanish language including

written materials.

OEBPS/Images/image00336.jpeg
Visit Our Massachusetts Location

204 Spring Street
Marion, MA 02738
United States of America

OEBPS/Images/image00337.jpeg
Visit Our Massachusetts Location

204 Spring Street, Marion MA|

OEBPS/Images/image00341.gif
06/13/2015 - 9:30am
Format: 03/25/2015 - 5:30pm

OEBPS/Images/image00342.gif
Date Time
06/13/2015 09:30am

0 Jun ~l2015 -l @
SU MO TU WE TH FR SA
1 7 3 4 & &

7 8 9 10 11 12 13
4 15 d8 12 38 19 20

21 22 23 24 25 26 27

28 29 30

OEBPS/Images/image00340.gif
Month Day Year Hour Minute

Jun v 13 +[2015 v[9 -] 30 <[am -~

OEBPS/Images/image00367.jpeg
5% </

OEBPS/Images/image00368.gif
A
compmnasats]

Untited 1 @ 400% (RG/Preview,

Edit Object Type Select Effect View Window Help (4

. =" o

Hax

OEBPS/Images/image00365.gif
% R —

grunticon.zip
19K8B

@

2
Qs

-

G

grunticon.loader.txt

Qs

icons.fallback.css

icons.data.png.css

png

icons.data.svg.css.

&G

preview.htm!

OEBPS/Images/image00366.gif
.icon-dribbble:

.icon-github:

®

.icon-tuitter:

L

OEBPS/Images/image00369.gif
(&

SVG

background-image: url(icon.svg#chart)

.icon { display: none }
.icon:target { display: inline }

icon”

OEBPS/Images/image00370.jpeg
SEASIDE RESORT

SEASIDE RESORT

OEBPS/Images/image00371.jpeg
Le

OEBPS/Images/image00374.jpeg

OEBPS/Images/image00375.jpeg

OEBPS/Images/image00372.jpeg
Mask

OEBPS/Images/image00373.jpeg

OEBPS/Images/image00356.jpeg
ETI"IIIIII ITTETET IIIIIIII;JOIIIIIIIII [ARN AR RNNRRRERENY IIIIIIII; IIIIIIII;J

2

EIIIIIIlllgllllllllgllllllll|IIII

OEBPS/Images/image00357.jpeg
1T | | | | | | |

OEBPS/Images/image00354.jpeg

OEBPS/Images/image00355.gif
—ﬁw/\m, Guide moox’
O ,m:> PHIC
FASHION

DESIGN

5 ADVERT\SING I
z

OEBPS/Images/image00358.gif

OEBPS/Images/image00359.gif
w Original

OEBPS/Images/image00360.gif
L sk - T - Te—
Untties1 @ 117% RG8/previem x
SVG profies: [SVGTT
Forts

Convert t outine

Options
Image Locaton: = Embed - Link
Preserve Tustrator Edting Capabilties

Advanced Options

(S5 Propertes: [Presentation Atbutes: 8

Decima Places: Encoding: [Unicade (UT'8)

Optimize for Adobe SVG Viewer
Include Sicing Data
Include X4

Descrption

© bttt curc v st for sl nrton.

Lessoptions | | Vool | @ Gancel

OEBPS/Images/image00363.jpeg
& Import icons

8 %

oS

m
L
+

TN

B B0
v g o
- @ o
8 B
o! [
M \E m

& Generate SVG/PNG

bl 2

g

o)
B

3 8 @

8 N
® o
® @
B ®
A m

Selection (7)

¥

3 B8 X > <

m

Generate Font

Yy 0 8

R 8 ~ 8

)]
&}

2

9 A:

@

OEBPS/Images/image00364.gif
What Is This
,

/1

-

[\%4

NS

e\

[I
e A\ ATt

Y

N\ |
I /
1 /
W]
€1y (819

\

Drag & Drop ur SVGs on the Grumpicon plz.

Grumpiconfig

Ofilament group

OEBPS/Images/image00361.gif
Drag your SVG file(s) here.

bkn_-ra_d.svg
bkn_-ra_n.svg

bkn_-sn_d.svg
bkn_-sn_n.svg
bkn_+ra_d.svg
bkn_+ra_n.svg
bkn_+sn_d.svg

7.16 KiB

6.268 KiB
7.207 KiB
6.28 KiB

7.732 KiB
6.948 KiB
7.819 KiB

after
2.747 KiB.
2.252 KB
2.799 KiB.
2.259KiB.
3.254 KiB
2.84KiB
3.284 KiB

OEBPS/Images/image00362.jpeg
415 bytes 25.36% saving

Show original
Compare gzipped
Multipass

Cleanup attribute whitespace

Remove/tidy enable-
background

Clean IDs
Round/rewrite numbers

Collapse useless groups.

Minify colours
Round/rewiite paths
‘Shapes to (smaller) paths
Style to attributes

Round/rewrite transforms.

bbssssssssaa

OEBPS/Images/image00389.jpeg

OEBPS/Images/image00387.jpeg

OEBPS/Images/image00388.jpeg

OEBPS/Images/image00309.jpeg
¥ Last Trade

Company Last Trade Trade Time Change F
< Trade Time

s

Change

<

Prev Close

L ‘ @ Open
Bid

Ask

1y Target Est
Lorem

Ipsum

OEBPS/Images/image00308.jpeg
i
Y
g

s st onr

Outbound flight
Zurich »-Copenhagen

AJSWISS Book

Prepare Fly Explore Login
Ot | @owowd Dremix | @oves | Ovorsws | O romen
Outbound flight
Zurich »Copenhagen e

e e

oy 88 -
[oHFdse

P

i > G)

4588 « 4

Busiwss u

cHeser

OEBPS/Images/image00307.jpeg

OEBPS/Images/image00306.gif
C @ DEPEN ~$ Fork [2 Share &3 Setting

Stable-header-rotated {

.csstransforms & td {
¢ 30px;

S R R A S
,&" & &@" ‘0@ ,oz" ,Qz‘z’
\\\0 \\\0 \\\0 *& §Q {‘&
Yy
QG QB QG C)G C)@ C)@
Row header 1 0 0
Row header 2 0 0

Row header 3 o o

OEBPS/Images/image00305.jpeg
Aswiss
©ole | o |6 o6

Book Prepare Fly Explore

[:] (0] @ (0} (0}

ot e Qutbound flight Yoursabcton

» Mioage caluator

Zurich »-Copenhagen Grond o o o

Outbound flight [—
Zurich »-Copenhagen

Tus 12052015 Wod 130572015 Tha 1us015

i 15052015 Sat 16082015

Wed 13052015 .

Fightnformation

o0, oass
Z®M Y cPH
B
a0, onss
= > cow 2
= - A o
T
me > G - - - O
© EconomyFex : o =
Busioess sover -
e o omay sees
we > o o
PY—— -

OEBPS/Images/image00304.jpeg
“We pay tribute t allthose who fought o the btter for
every street, every house and every fronter of our
Motherand”

Parade to mark the 70th anniversary of the Great

Victory Square that concluded the gala events to celebrate the 70!
s of Victory in the Great Patriotic War of 19411945,

Concert to celebrate 70th Victory anniversary

Viadimir Puti attended a concert The Roads of Great Victory on Red

niversary

OEBPS/Images/image00303.gif
President of Russia Events Structure Videosand Photos Documents Contacts

Events

Concert to celebrate 70th Victory anniversary

Vladimir Putin attended a concert The Roads of Great Victory on Red

Square that concluded the gala events to celebrate the 70th
anniversary of Victory in the Great Patriotic War of 1941-1945.

May9,2015 2210 Red Square, Moscow

=

OEBPS/Images/image00302.jpeg
Events

Structure

Videos and Photos

Documents

Contacts

For the media

Directory

s

President of Russia

Concert to celebrate 70th Victory
anniversary

Vladimir Putin attended a concert The Roads
of Great Victory on Red Square that concluded
the gala events to celebrate the 70th anniversary

of Victory in the Great Patriotic War of 1941 —
1945.

May9, 2015, 22:10
Red Square, Moscow

OEBPS/Images/image00301.jpeg
ﬁ HOISEUL INSTITUTE I T—

CHOISEUL INSTITUTE

Acting on major

Meetings for action o strategic balances

OEBPS/Images/image00300.jpeg
FESTIVAL
STYLING

OEBPS/Images/image00392.jpeg

OEBPS/Images/image00393.jpeg

OEBPS/Images/image00390.jpeg

OEBPS/Images/image00391.jpeg

OEBPS/Images/image00396.jpeg

OEBPS/Images/image00397.jpeg

OEBPS/Images/image00394.jpeg

OEBPS/Images/image00395.jpeg

OEBPS/Images/image00378.jpeg

OEBPS/Images/image00379.jpeg
Flex container Cross start
(with flex-direction: row and direction: Itr)
Main axis

Flex item Flex item Flex item

o

N

Main size -

v

o

()

|-Main start Main end

— Cross axis -

Cross end

OEBPS/Images/image00376.jpeg
BUILDING ADVANCED
RESPONSIVE MODULES
WITH FLEXBOX

70EM Gl | ENWATER

OEBPS/Images/image00377.jpeg
Flexible Box Layout Module &-wo Global 81.74% + 1037% = 9212%

unprefixed: 71.74% + 036% = 721%
Method of positioning elements in horizontal or vertical stacks.
Support includes the support for the all properties prefixed with
flex as well as align-content, align-items, align-self, and
Jjustify-content.
Ussgerelatiie. Showall
Android Chrome for

Firefox Chrome Safari Opera 105 Safari* OperaMini* Browser* Android

OEBPS/Images/image00299.jpeg
DATA FROM 25M SESSIONS ACROSS THE WEB

Expected Engaged Time and Scroll Depth

Seen by over 80% of
foran average of 13s

Expected time this part of the page will be seen (seconds)

Pixels from top of page

7 Chartbeat

OEBPS/Images/image00298.jpeg
DATA FROM 25M SESSIONS ACROSS THE WEB

Engagement Across the Page

Engaged Time peaks
just below the fold

Time engaged with this part of page in view (seconds)

Pixels from top of page

7 Chartbeat

OEBPS/Images/image00297.jpeg
DATA FROM 25M SESSIONS ACROSS THE WEB

Scroll Depth

Portion of page just above the
fold seen by nearly all visitors

Many visitors scroll
before page fully loads

Fraction of visitors who see this far down the page

Pixels from top of page

7 Chartbeat

OEBPS/Images/image00296.jpeg
Symptoms of Cancer
If you suspect that you have cancer, you should contact your
doctor

Read more in the leaflet about the symptoms of cancer

Here you can download the leaflet Symptoms of cancer. The booklet is
available in Danish and in several foreign languages.

Download brochure or order it in our shop

Stools changed

Bleeding, unexplained

Fever and night sweats

Cough or hoarseness

Headache, renewable

Lump

Lymph node, raised

Melanoma, changed

OEBPS/Images/image00295.jpeg
Shopping Cort Sh

Bear In i ar In
Underwear == lerwear
Luke Bote ke ot

Shipping Address

OEBPS/Images/image00294.gif
i web page

Find the product you want

Proset e

Prosct e

[

OEBPS/Images/image00293.gif
°
=
(] T web page.
] Tis web page e o [[—
Find the product you Find the product you want
want
(e (e : (
oo Comtohn) Gt Gt
Soncions
S
‘Select three.) (a))
O crectsoxone
Product e ‘Product title. | Product e
[EpEs—— e L e
N - S I | e
[Ep——
@ @ @
Q 3

OEBPS/Images/image00292.jpeg
Southweste Southwests e =
— — ——————————————— — —

Launch ® Launch &

Heart & Heart ©

Plane ¥ Plane ¥

More + People &

FAQ ©

Visit Southwest.com

[Southwest

OEBPS/Images/image00291.jpeg
Lo N

[t
English nwwn o 'x 19.05.2015

_ = . F
Al @le
nyT niyTn
<
©vII90 n'n'n
DIR nnn
nnar7o o0 g
XTI

Rl

NNDWA 1NN n'72an one iznd

17! ¥ NNHYA YN ANT TNI002 * ADAT? A1 01 (7N 7Y
D'WYIN DIV DAl DDYNA DA * 09Y AN> WA

Il e

OEBPS/Images/image00290.jpeg
2@ theguardian e become member sgnin sbscrbe | Q| search jobs dating more- UKe

s
e p— theguardian

headlines C A UK world politics sport.football apinion business lfesyle fashionenvironment tech travel = all

headlines

Exclusive Energy
giant exploited

Ebola crisis for
corporate gain, say 2
health experts -

Hillary Clinton breaks.
bty Words bt silence el want

e those emails out
Exclusive Energy giant exploited

o = Uk et commerciradio | Jeremy Punan o6 BiC

Ebola crisis for corporate gain, say
health experts

i sroupadvisedstationsto licence feeclealy catast
T At pe

f 4
ez povery e Meomtquos B0 atnGoenrat | i Ao
plan hits rocks after Police arrest nine. N - ot

OEBPS/Images/image00381.jpeg

OEBPS/Images/image00382.jpeg

OEBPS/Images/image00380.jpeg

OEBPS/Images/image00385.jpeg
Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Nulla blandit erat ac nunc malesuada pellentesque.

Aliquam lacinia non risus eu rhoncus.

OEBPS/Images/image00386.jpeg

OEBPS/Images/image00383.jpeg

OEBPS/Images/image00384.jpeg

OEBPS/Images/image00409.jpeg

OEBPS/Images/image00329.jpeg

OEBPS/Images/image00328.jpeg

OEBPS/Images/image00327.jpeg

OEBPS/Images/image00326.jpeg
iy

o, S st nd a0

Boen and eresomins

oty

e
L S —
¢ Dewsctind

e A

De DEMO

Germany |
1} Denmiark lown into
2 Korea, Democratic People’s Republic of ccessible,
w Congo, the Democratic Republic of the ng typos,
1 Lao People’s Democratic Republic

Russian Federation

Lour

o Bangladesh

Netherlands
T Sweden 2

OEBPS/Images/image00325.jpeg
Location T Category @ Location = Category

Vintage Military Style Laptop Bag

$175

OEBPS/Images/image00324.gif
Price Range

Oo——O

€9 €93 Average €1000+

OEBPS/Images/image00323.jpeg
1 Choose an amount to donate:

2 %) €3 E3 3

Make donation in honor or memory of someone.
| would like to make this a monthly donation

2 Enter your information:

Full Name E-mail
yorgemalicom
Address zip

NEXT STEP >

OEBPS/Images/image00322.jpeg
Yappee for Businesses

Do our legendary 45 second signup, and be
on your way to more customers.

+4FOR DEMONSTRATION PURPOSES ONLY. NO CHARGE WILL BE MADE**

8= What kind of business are you?

VS a

Sestood Claingsenices < Gourmetsurgers

e ¥ Q

oo Coda Lownge sson

Yoga ses

OEBPS/Images/image00321.jpeg
THE BEST ARE ON TYPEKIT

@

exoris Font Found

DARDEN
STUDIO
o, &

WHO USES TYPEKIT?

s dpendent s o g corpornons deses i s
e by Tpee et e g g e s

OEBPS/Images/image00410.jpeg

OEBPS/Images/image00320.jpeg

OEBPS/Images/image00411.jpeg

OEBPS/Images/image00414.jpeg

OEBPS/Images/image00415.jpeg

OEBPS/Images/image00412.jpeg

OEBPS/Images/image00413.jpeg

OEBPS/Images/image00418.jpeg

OEBPS/Images/image00419.jpeg

OEBPS/Images/image00416.jpeg

OEBPS/Images/image00417.jpeg

OEBPS/Images/image00398.jpeg
lada
que.

OEBPS/Images/image00399.jpeg

OEBPS/Images/image00319.jpeg
SOUNDSLICE

7

610 Fom7

e

Aukd Lang Syne.

OEBPS/Images/image00318.gif
Interactive energy bill

Our interactive energy bill helps to explain each part of an energy bill,
including the new tariff information you will be seeing on bills in the
coming months. Follow the orange light bulbs to see descriptions of each
area. You can also download a copy of the bill, which includes
explanations of each area (PDF 2MB).

h 'MMN:

Simpler, clearer, fairer

0On 31 March 2014 three new comparison tools were brought in to help
make it easier for to compare energy deals:

OEBPS/Images/image00317.jpeg
. [| D
introduction
Footnotes on the web are a pain in the ass. You click on a tiny number, get

transported somewhere near the bottom ofithe page, find the footnote you
were looking for, and click onia link to go back to where you were on the page

|painless. It automatically detects
link into an easy-to-click button,
on the footnote button.

 great on any size viewport; the
automatically (based on the
relative amount of space), will update its location as the viewport changes size,
and will ensure that the popover never scrolls offscreen. All of that adds up to a

much-improved user experience.

Ifthe author had the foresight to include
such a link; otherwise, you're on your own
to get back to the spot in the article where:
you left off.

OEBPS/Images/image00316.jpeg
PROJECTS BY STATE

[isiaes

FILTER

Category

Native Organization

Project Type
Status

Al Catogories
Al Organizations
Al Projoct Types

At Statuses

SUBMIT >

567 8 9

10

News s evenTs

suns
B Ao

Q

ResouRces

1

o1
sa0su7488
$506221,903

»
s
65954493

80

OEBPS/Images/image00315.jpeg
€3 CHARTISTIS Getingstaned APIDocumentaton Bxamples Plugins Contbute

CHART CSS ANIMATION EXAMPLE

Download

Specifying the style of your chart
t only cleaner but
bles you to use
e CSS animations and
transitions to be applied to your
SVG elements!

OEBPS/Images/image00314.jpeg
18:30

12:02

0O 4

Greens radish arugula

‘Caulie dandelion maizeentil colard greens radish arugula sweet pepper
wiaterspinach kombu courgsttelettuce, Celery coriander bitterleaf
epazote radicchio shallot winter purslane collard greens spring onion
saquash entil Artichoke salad bamboo shoot black-eved peabrussels

Greens radish arugula

(e dandalon matze e ol greer ah arugasweet peer
‘watrsinsch kombu courgettelottce Celry corander biteret
epazpe radicciostallot wnterpursans collard reens sringnin
Squah et Artichoke sl bambooshoo blck-eyed peabrussels
spoutgarichohiral

OEBPS/Images/image00313.jpeg
KORAK 1 0D5: PROMOTIVNA PONUDA

PROMOTIVNA PONUDA UZ
NOVU MAXADSL USLUGU

Prikazane cifene ovise 0 odabiru Evatunai
ugovome obaveze u prethodnom koraky.
Exatun je odabran za ovu narudibu.
promienite opcije u prethodnom koraku

ODABERITE PROMOTIVNU
PONUDU

P Se— Pr— Pr—

—_—————o0 o o o

PROMOTIVNA PONUDA UZ NOVU
MAXADSL USLUGU

Prazans iens s o odabi Eraéunalugoioms obavers u prthocom
orku, Eratun o odabranza o narudibu.
promientoopcoupretodhm ko

SMARTPHONE SONY XPERIA €
i 99,00 2

TABLET VIVAX 8"

199,00 252 e

OEBPS/Images/image00312.gif
FIVE NAPKIN BURGER:

Home Messages @ Schedule Availabilty & Dream

< SEPTEMBER1-7 >

1508 2 Mo 3 TE 4w 5 THY 6 7 m
9000w Lunch Lunch 900 x| AliDay Time Off
Lunch Lunch Peronairssons
sanencer Warsatt
S s escse
Lunch 1w
Banencer
Dinner 0%« Timeoff
Dinner Peronairssons
Watsaft
fr—
\cawa | Dinner .
Dinner
Watsaft
AVAILABILITY & DREAM View detalls > TIME OFF REQUESTS [New
The standard weekty shifs you are avalable to work, which are Days inthe fuure you want o have off forvacaton o events.
your eal"dream" s, and whichyou can' work. Reques's must be approved by your manager

. Mo W W TH R SA

wo [l 1 N N K3 B3 OctE:Dinner PersonalRessons © roueso
ower [N I N M OctgDimer PersonalRessons © s

BOWOR DR AT Nov25: Lunch, Di.. Doctor appointment @ Apraoved

OEBPS/Images/image00311.gif
FIVE NAPKIN BURGER:

SCHEDULE TUSE | smsrreer

THIS WEEK: SEP 17 <i> Home Messoges @ Schedue Avalabilty & Dream

SCHEDULE

THIS WEEK: SEP 17 <

B
sun1 Lunch: Bartender B B ER
Mon2 Dinner:Waitsaff + "]
Todsy 300 Lunch:warsaft « o .
FAS M52 Lunch:Bartencer Sunt Luneh: Sartender +
A6 6309 DianerWonsifl Mon2 Dinner: Waitsiaff +
TIME OFF REGUESTS. New Today 9008 Lunch: Waltstaf «
Days in the ft vecamon o Fri6 158 Lunch: Bartender +
evens.Requests mus e approved by yourman
Oct: Dbonar © o Fis 630p Dinner: Waitsa
porew— P— TME OFF REQUESTS New
Nov2:Atday © wmon> Days i e ftre youwant 0 have o for vcaton o evens. Requess st be approved by
your manager.
Nov 25: Lunch, Dinner © oo
Oct: Dinner PersonalReasons © naveso
Nov2s-Dec 1 @ e
Oct8: inner PersonalReasons s
Dec25 @ rexcro ®
Now 23: Al day chool Gracuaton Partyfor My... © wmovo
ey © oo ov 2 y s tyfor My... @
ey © oomn Nov25:Lunch, Dinner Doctor appointment © wmom
- © v Nov28-Dect Clss feld ip @ nxcro
Dec26 @ e Dec25 Christmas @ ruxcro
Dec26 Christmas © weo

OEBPS/Images/image00310.gif
Swipe Table with Mini Map

MOVIE TITLE

Avatar

Titanic

The Avengers

Harry Potter and the De...

Frozen
Iron Man 3

Transformers: Dark of th...

The Lord of the Rings: T...

Skyfall

Transformers: Age of Ex...

RANK

© O N O O A~ O N =

—_
o

YEAR

2009
1997
2012
2011

2013
2013
2011

2003
2012
2014

RATING
83%
88%
92%
96%
89%
78%
36%
95%
92%
18%

OEBPS/Images/image00400.gif
Full name:

Email address:

Comments:

OEBPS/Images/image00403.jpeg
Lorem psum dlo 54 ame, conecior dpiscing . Vo o massa et U pretum oo posuers.
condimonium Donec s acus uiae magna dapibus aucbus u wiaa o U ne sodlesest, on omger s
Duis fouil Kl o nunc venenats Rt Ilogr st ame cus ed o Pl oculs 1. Pron &
s magn mperded inces o ursus o

‘Vestbulum placeat ffciur b, vl vestbulan gl dapibus non Maur dolr sapien, malesuada maximus.
melsteds o maesuada o foror Akquam s, o o s s, dam scus ausod T, hendied
U 685 ot st Nunc o sccumsan acus, o solcud dlor NulaScolorsque Vbl 65, ol
omporactussuscipli o Praesant s s, Conamentu 9 raxus i, mols o k. Pro s
Vo oc o ot wutto dctum mots.Donoc raul, s o u.accursan lum i Nulam at
i 0t consocotr oo vias ul . Maurs a ktond puts. S o 0 s cos 710
Phaselus acumsan,otus o9 cusus manmus, o 1 vicu o of conooors vl st amot ot

Lorom psum dokr i amet,consaciatur adpiscing sl Mo ac mssa el Ut e
ot st postere condimentum Donec qus 5cs o magna dapbus auchus i vao.
e Ui nec sl st non empor 1. Dus gt b fnunc venenatshencrrt.
Ineger i emetocus sod 0 puves 9culs e 1o 4 4 magna mpordet
s ot curses o

Vestbulum ioceat ffcu gul, e vestbukam gl depbs non Maurs o
Sapen, melesusda masmus maksuad o, mlesuada ac 070 Akam fnbus, 1D
c 8os e, G ocus cuSOd 4 e s 0hs vl st Nuncron
accumean octs, o soBcudin dolor. ol scoorsquo vostbul 10, vl lpor
Joctssuscii o Prassan st sk, condmontum maxius n, ol ac gl
Pronolusacu, vohicul c 0 al, woutalo it motus. Donec ot s
/ol . accumsan rrum orc Nollan s i a consciolur susmod oo .
i Maurs o ldond purus. S ol s s st Phasols
accumsan, lctus ol crsus masenus, ex 1 vahicul i, o cmmodo aos vt it
ametioers

OEBPS/Images/image00404.jpeg
The Library of Congress

OEBPS/Images/image00401.gif
Full name:

Email address:

Comments:

OEBPS/Images/image00402.jpeg
[Off-canvas nav

€= cla

X

Publications

Your Account

Contact Us

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Morbi ac massa velt. Ut pretium et est
condimentum. Donec quis lacus vitae magna dapibus faucibus ut vitae leo. Ut nec sodales es
Duis feugiat ligula at nunc venenatis hendrerit. Integer sit amet lacus sed leo pulvinar iaculs id
nisi id magna imperdiet ultricies at cursus tortor.

Vestibulum placerat efficitur ligula, vitae vestibulum ligula dapibus non. Mauris dolor sapien, mj
malesuada a, malesuada ac tortor. Aliquam finibus, libero ac finibus aliquam, diam lacus euisnj
purus tellus vel justo. Nunc non accumsan lectus, eu sollicitudin dolor. Nulla scelerisque vestib
tempor lectus suscipit non. Praesent justo justo, condimentum id maximus in, molis ac ligula. i
vehicula nec leo at, vulputate dictum metus. Donec erat ligula, finibus eu felis ut, accumsan rut}
turpis in urna consectetur euismod vitae ut turpis. Mauris at eleifend purus. Sed ac tellus id tell
Phasellus accumsan, lectus eget cursus maximus, ex nis! vehicula ante, et commodo eros veli

OEBPS/Images/image00407.jpeg

OEBPS/Images/image00408.jpeg

OEBPS/Images/image00405.jpeg
The Library of “The Library of Congress

OEBPS/Images/image00406.jpeg

OEBPS/Images/image00269.jpeg

OEBPS/Images/image00268.jpeg
D)

Prioritized for Legal Liability

- A
o Prioritized for Productivity & Tolerance
] i
=z [Life
F5; ©
'f-': g L6 L20 L40 L100 L200 L500 L1000
= = Essential
O 2 money
3 (E) E6 E20 E40 [E100 E200 E500 E1000
Discretionafy
money
D) D6 D20 D40 D100 D200 |D500 D1000
Comfort
© C6 C20 C40 IC100 C200 C500 C1000
1-6 -20 -40 -100 -200 -500 -1,000

Number of people involved +20%

OEBPS/Images/image00267.jpeg
Reading Is Fundamental
Website Design

DESIGN CONVERSATION: THE LITERACY PROBLEM & CTAS

uguses, 2013

DESIGN CONVERSATION: LITERACY FACTS & STATS

10,2013

DESIGN CONVERSATION: LITERACY FACTS & STATS

DESIGN CONVERSATION: DESIGN TWEAKS

s 2011

Greater Pittsburgh Community
Food Bank Redesign Timeline

Sept 25,2014
Push site live for soft launch
View New Website

August 28,2014
Meeting
View Meeting Notes

August 28,2014
Style/Design changes
View Pattem Lab

August 05,2014
Design changes
View Pattem Lab

Juy 17,2014
Layout Redesign
View Updated Designs

June 21,2014
Layout Adjustments
View Pattern Lab

OEBPS/Images/image00266.jpeg
I Collaborative Estimate Example - B

Fio Eat Viw o Fomst Daa Too Addors W e - - |
BT s %o me Aw w . BrsA. %B-E E-4+.5 coBEY-I-

s document s providad as a demonsiration of a Colabaratve Estmate used by Sparkbax n lial
conversations wih potental naw cliens. We nvite ou customers to hlp us with the estmate, sinco s ony our
ombined knowlodge and experience that can make fo a sucoessful project.

2 e "Tasic column below shouid be replaced wit the tasks needed fo a given project. The min and max hour
‘columns allow you fo make a rough estimate quicky by specying a ange. The est ofth feds are calculated
based on the yellow highighie fieds.

1you have questons, lease tak to Ben Calahan: @bencalahan

= MinHours Max Hours Max Prica

o Paning
7 implementaton
o poin

o supon

0 Subtota

12 Avg por wook 250 67 sessrs s747500

" a OT Rato/ Hr

OEBPS/Images/image00265.jpeg
RESPONSIVE
PROCESS

BEN CALLAHAN

OEBPS/Images/image00264.jpeg

OEBPS/Images/image00263.gif
TOOLS—BEFORE OUTPUT—BEFORE

F] @ [o]

TOOLS—AFTER OUTPUT—AFTER
F B ¢ B A ¢ Q =B)
W et e ho Vem

® w= @ o @
®

OEBPS/Images/image00262.jpeg
Arici Body

Commant Thresd

Quz

(Oarisms o groups of mclecules (axd possily lors) joned togather 1 fom it section of an tafoce. Thy can
‘conset o smiaranio lapaate ciecd ypes. ForGxangis, & Masthaad oasem mht consiet o @ 9o, navigatn, nd
o o, whe 8 rocct T Gariem i conie o the 8ame PO ko mclecu rpoated Over o over

Contant Type

Brome

B

Commert (wo o o) Meda Bock (o

OEBPS/Images/image00261.jpeg
Radio Free

Flo Et Vew hsen Fomat Oua

1 ganoral, these ar grups ofatoevel peces.Innerces, ckeculos e Goups of dlements tht urction togaher
Uk For exampl, & fom label, sewch ad, and bution ko can combin them Kogethr 0o & search o molecse.

Buldng up fom stoms 10 moleces ancages & o one thing an o i wel” mectalty, and ancoxrages creaing rusatle
Irtertace patams.

Rocured Asoms
Modia Biock e cooct s

Modia Biock (hesdiine
oniy) image

Hesdiine with Subhesd n
2
3 Hosdine with Byline "

o Hesdiine wit Subhesd

aByine e
= image wit Cagtion image
Sesrch Labe
Text it
= B
Pl Rato buston two o
> Submt Bt

ool | TRioak o

OEBPS/Images/image00260.jpeg
Radio Free E

Fio Et Vew insen Fomat

Block leve Elem

Atoma e besic lemets, such 8 fom lsbel, s, o bustons.

oo v sbstrct d arencfen ol skl 1 ek e, b they pecvide & useul refrence nd aow you 10 800 all your
(bl styes lad ot o a garce.

Aloms shxi consist of 8 siogle element thl can b mociied wah 8 class ste.

Duscription

Class Atstbute Notes

OEBPS/Images/image00259.jpeg
4

9 1 ¥ n B u

6 17 18 19 20

Ubraries

3 2% 25 26

Radio Free Europe

30 alendar

OEBPS/Images/image00258.jpeg

OEBPS/Images/image00257.jpeg

OEBPS/Images/image00256.jpeg
IE B

Bernin Sans Condensed Rl
Bernina Sans Condemsed Semibold
Bernina Sans Condensed Bold
Bermina Sans Condensed Extrasold

Regulsr
Reguor ot
Proima Novs Bold
Prosina Nove Boid ol
Proxima Nova Black
Proxima Nove Biock Htoic

=y o | [F=Ragons-cop
ons-cap Kaw] oNS-cay A

B W | T

bonsc.cro BN carrt \onse.con BN ceicasr

o T S— d PCLITIO— .
<Ay op. KAUBPNS-COP.

ons-cay KAu| ONs-cay Ky
s cor s <op

lonccon BN —wan onc.con. N_wean

B

OEBPS/Images/image00255.jpeg
FINE*RARE

FINE'RARE

THIS IS A HEADLINE (H1)
THISIS ASECONDARY HEADING (2)

ALTERNATE HEADING

ABCDEFGHUKLMNOPQRSTUVWXYZ
sbedefghijklmnopgrsturmays
1234567890-+

(:hét_t-.a\nl Cos'd'Estournel

OEBPS/Images/image00254.jpeg
KashFlow Adds Tradeshift
Support After Being Blindsided By
News Of Intuit’s Strategic

Investment In E-Invoicing Startup

Tﬁmmch TechCr
Redesign Mockup Redesi
Do Not Pubtish] [Do i

OEBPS/Images/image00253.jpeg
“Turn the page for step 2”

GIVE A GIFT THAT'S
JUST RIGHT.

(o A

ABOLD HEADLINE

Books for kids Books for kids Books for kids A BOLD HEADLINE
whoneedthem. whoneedthem. whoneed them. o
1 e

OWL MOON UYS A BOOK POR
prie AKID WHO HAS

NEVER HAD ONE

<
- . [wrve vsiran
> 4,302,116 KIDS

DISCOVER THE JOY
OF READING.

WE'VE DONATED THIS BOOK TiMES. «

oot e s ove e

-
g =

conds [T ——
o

OEBPS/Images/image00252.gif
- tat el orq
- 0w N — puplonce
B oINS
Fanne Ty Peolecs - Epuck s
“WAer's 13 LAGBEST SPmsT o
|- Zoto — CAUGT Ar EROMATIC L
B s o - pasnse You GuAD

| - bl aur i Reko - BIFOL 1S Tie FaaT POVIC
- SUMMUL (rAenM oSS - s Hrzeguor 7 15 TwAmA?
S s Ccmnenys B mawsne pun MILORES

o i ore

| BMW p Eis e BY S - qoic ywieues

-y (e Buent Psps SN e PASE VIEWS
- oty e - ookt AAmMYNES

- BRAF © MoTREL: TSTHLT A MOVEMLAT © ~Ger InwLuto — 24 totud
PSS W (D5 1 WD a0 e TRBG T |

-0 Gl PmerEsIng CanoIvAmE Loun — NING

B T bnay SBULD be “TAYE THE PLcoce”

DS 1S THE MeST PoPuAML SR

OEBPS/Images/image00251.jpeg

OEBPS/Images/image00250.jpeg
Visual Inventory GO pl‘a'yfu"g

OEBPS/Images/cover00240.jpeg
SMASHING BOOK 5

Real-Life _
Responsive

Web Design — Part 1

OEBPS/Images/image00421.jpeg

OEBPS/Images/image00422.gif
Lorem ipsum dolor it amet, consectetur adipiscing elit. Morbi ac massa velit. Ut pretium et est posuere condimentum. Donec quis lacus vitae
magna dapibus faucibus ut vitae leo. Ut nec sodales est, non tempor risus. Duis feugiat igula at nunc venenatis hendrerit. Integer sit amet lacus
sed leo pulvinar iaculis id in arcu. Proin a nisi id magna imperdiet ultricies at cursus tortor.

Vestibulum placerat efficitur ligula, vitae vestibulum ligula dapibus non. Mauris dolor sapien, malesuada maximus malesuada a, malesuada ac
tortor. Aliquam finibus, libero ac finibus aliquam, diam lacus euismod mi, id hendrerit purus tellus vel justo. Nunc non accumsan lectus, eu
sollicitudin dolor. Nulla scelerisque vestibulum eros, vel tempor lectus suscipit non. Praesent justo justo, condimentum id maximus in, mollis ac
ligula. Proin tellus arcu, vehicula nec leo at, vulputate dictum metus. Donec erat ligula, finibus eu felis ut, accumsan rutrum orci. Nullam at turpis in
urma consectetur euismod vitae ut turpis. Mauris at eleifend purus. Sed ac tellus id tellus luctus tristique. Phasellus accumsan, lectus eget cursus
maximus, ex nis! vehicula ante, et commodo eros velit sit amet libero.

OEBPS/Images/image00420.jpeg

OEBPS/Images/image00425.jpeg
Another School-free Snow Day for Hillsborough Kids

OEBPS/Images/image00426.jpeg
Another School-free Snow Day
for Hillsborough Kids

OEBPS/Images/image00423.jpeg
Publications | Shop

News

OEBPS/Images/image00424.gif
Publications

Shop

Events

Your Account Contact Us

OEBPS/Images/image00429.jpeg
Another School-free
Snow Day for
Hillsborough Kids

Hillsborough News

28 January 2015

OEBPS/Images/image00427.jpeg
m Another School-free Snow Day

for Hillsborough Kids

OEBPS/Images/image00428.jpeg
m Another School-free Snow Day

for Hillsborough Kids

OEBPS/Images/image00289.jpeg
GOV.

Home Drvingand transoort

Home

Driving and transport

Blue Badge, parking, local travel and the ats

environment 3
Clamping ? ’ Businessand |

Drivers of lorries, buses and goods s

vehicles .
Incues tsts,hsith and safty.roadside chcks and

Disabled peop)

Driving and transport businesses

Incies sotting up et stotons,empiyng vrs and 0

Drivinglicences ‘"“
Inclads geting ting sncechanio your s, >

tying

feesand acingyour apcaion
Driving tests, motorcycle tests and countryside
learning to drive N
Bookin,changing nd canceling sractica and thecry Housing andic

Driving witha disability or ahealth
condition i Pesspo
Inormationabout medicat ondiions that afctyour abroa
ayoarve

Driving and
transport

e Atoz
avelandthe

environment

Drivers oforries, buses.

andgoods vehicles

Drivingand transport
businesses

Drivinglicences

Driving tests, motoreycle.
tests and learning to drive

Blue Badge, parking, local
travel and the environment

Appeala parking fine
Applyfor adisabled person's bus pass
Apply for adropped kerb

Applyfor an older person's bus pass
Apply for or renewa Blue Badge

Blue Badge scheme: information from
your council

Car fuel and CO2 emissions data
Change the details on your Blue Badge

Find out where Blue Badge holders can
park

Fuel consumption and emissions for
vans.

Geta parking permit

OEBPS/Images/image00288.jpeg
&

ERLEREIOISL

LT, SRPREL00E N, TS ARRT AN 5, AVRBBRT IR UNERT 7

%

OEBPS/Images/image00287.jpeg
STAR.WARS'

THE LATEST //

COLLECTIBLES FROM THE OUTER RIM: BATTLE AT
SARLACC'S PIT!

BY: MATT DRACULA

@ NEWS 11 MAY 18, 2015 &

GALACTIC
BACKPACKING, PART 8:
VISITING REAL-WORLD

NEWS + BLOG

VIDEO

EVENTS

FILMS

TV SHOWS

GAMES + APPS

COMMUNITY

DATABANK

OEBPS/Images/image00286.jpeg
@ Log in to mobile banking
@ Login to desktop banking
Q Find abranch

Q Call us 0n 0800 1133 55

7am-9pm Monday to Friday
8am-6pm Weekends and public holidays.

New ’round here?

Kiwibank is 100% New Zealand owned and operated. We've
been thinking up ways to give Kiwis better value banking
since 2002

Everyday banking >

[peconal Business o Kiwbank About
ok

Seach Q. Inemes bnking ogn @

You could get going with $¢ ...

Joa Kiwbank with you everyday bankin, 2K s

regulaly and youcould et e exta o Ben) cancaonior o

Savings appy Avalbl o a e tme.

Sansing >

New round here?

Keen fora 5-star home loan?

& immEn

5.39%

<

Who says Kiwis can't ly?

OEBPS/Images/image00285.jpeg
:
WWF Wwwi
. e R

Protecting species
contributes to a thriving,
healthy planet.

nal populatic

'S LARGEST FISH

OEBPS/Images/image00284.jpeg
(YPERLINK("htip/blog cloudfour com/common-pattemsr*, "About’)

D s c o 3 F @ H ' 3
- lo Gui

‘ _ e s e B

1o Tables

M Table

112 Prcing table
113 Shopping cart contens table.
114 Numerical table

115 Table variation stylos

16 Responsive table

117 Definiton table

118 Colapsing table cells

1o Forms

120 Form with legend

121 Inine form
Form with horizontal labotinput
alignment

Form that reads like spoken
word

124 Grouped inputs.

2

2

125 Textinput

126 Emailinput

By Framework -

OEBPS/Images/image00283.gif
Finish

Start
Start

Finish

OEBPS/Images/image00282.gif

OEBPS/Images/image00281.jpeg
RESPONSIVE DESIGN
PATTERNS AND
COMPONENTS

VITALY FRIEDMAN

OEBPS/Images/image00280.jpeg

OEBPS/Images/image00279.jpeg

OEBPS/Images/image00278.jpeg
Challenge

Skill

OEBPS/Images/image00277.jpeg
SN I

Serious Abouta Web Serious About a Web Built Right
Built Right

saw pmancisco

OEBPS/Images/image00276.jpeg
T S e =
SPARK-BOX RK:BOX

Hey There

“ T ; H.
S SN

OEBPS/Images/image00275.jpeg
Mews Racpes HowitWorks Sog Sppert

What
Matters
Most

Wtch o Vo

Let's Eat

Traditional menu
November 2014

s e i p
by i Cllah

Vegetarian menu
November 2014

estured Recipe lapenopgper pza
by T alaban

Fmbving oo with myprep workfor t
pcial holday mes that we o posed.
anjonegue ay tps?

ks
Sure, Kato Canyoujump n 1<
e and e con kot

evryting? Thanks

What We Offer

W offer customized resources and supportiv
guide you througha singl cooking day tht
freczer ull ofseasonal mesls to njoy when

4. Four
. Sugar
L. water
e, Flour
% Sugar
15c. Water

OEBPS/Images/image00274.jpeg
MAKE FREEZER COOKING EASY

We offe customized resources and supportive

frenci to aide you through a single cooking day
afreezer full of seasonal meals to
hant.

What's in your kitchen?

B 2

How many people are i your amily?

Iabsolutely canot use:

OEBPS/Images/image00273.gif
Solve the

Problem

Establish the
Aesthetic

N

Refine the

/ Solution

1

The Switching Point

OEBPS/Images/image00272.jpeg
88 sparoox ~\&@
[buiding seesparkbox.com/content-prototype/index php T 0SPe@O@OE

Build right, and

Set Your Site Free.

Rooted in the American heartland, our team of craftsmen answers the call for a better web. Driven by deep conviction in a web liberated from
device constraints, Sparkbox leads the way toward a greater standard as we write, educate, and build.

For the fluidity of your content, for the integrity of your vision, for the cause of a more durable web, we invite you to join us.

Featured Work

Once A Month Meals Responsive Web Design and Application
Go to onceamonthmeals.com/

Not actual copy. Working with OAMM on a Al the details of the project, including a quote from the client. *Fake quote about how much they
loved working with us on the project” - Contact Name, Contact Title. The site was a lot of fun to make, and we saw great results.

Working With Us
'We offer our brains, sweat, and honesty.

OEBPS/Images/image00271.jpeg
For our brand, we prefer...

Organic or Graphic

@

DISCOVER NEW
ADVENTURES

Comments

OEBPS/Images/image00270.gif
1. Homepage

Headline

Hero image

About Us copy

Featured Work section
Section title

Featured Work item includes - Featured Image, Project Title, Link to see the
featured work (optional), Description, and Link to read featured work details entry

Working With Us section
Section title
Subtitle
Image

Whatwe do (A few sentences describing our offerings)

[} Emily Gray

11428 AM Sep 4

You can drop in notes for design you
‘might get from the client.

[} Emily Gray

1120 AMSep 4

For open-ended content blocks, you
can help guide your client expecations
‘about how much content should go in
the area.

[} Emily Gray

1430 AM Sep 4

You can put notes about how many of
these items will need to be
‘accommodated on the page and have
a conversation with your client about
how they want these items to appear.
Do they want to hand-pick the items
that show up here, have it be the most
recent, etc?

OEBPS/Images/image00430.jpeg
Another School-free
Snow Day for
Hillsborough Kids

Hillsborough News

28 January 2015

OEBPS/Images/image00444.jpeg
highlights highlights
Ancient history

Jaw bone found in

Ethiopia s oldest Ne: g‘ﬂ,

known human o

lineage remains -
eLive Newcastle

United v Manchester
United: Premier League

Pardon or prison? What would happen i
‘Snowdenwent home.

HelptIneed alast minute easy World Book
Daycostume

Steve Bell on David Salma Hayek '®®Iama
Cameron and the feminist because a lot
economy - cartoon of amazing women
have made me whol
am today
Salma Hayek on womers ghts
lamL_ The ninerules of best before dates S o st became 8 povter
/ o fieie whees i dhicx butfoed e playerin the movies

Communist Manifesto salesrise up s
Penguin releases bargain classics

OEBPS/Images/image00445.jpeg
News Events Contact Us

Main Content

OEBPS/Images/image00442.jpeg
s Qb “Thai Shrimp Salad
Thai Shrimp Salad wode ey

SERVES 3-4 AS A SIDE DISH

s Mins 5 MiNS 20 mins

Ingredients

+ 400 grams shrimp, peeled and deveined

« 11sp vegetable oil

« 3tbsp sweet thai chili paste

Ingedionts

« juice of a ime 40 s st o v

« 1 stalk lemongrass, only white parts
« 2 medium shallots

JRpCRp—
+ V2t e bty pchd s g

« 12 cup fresh mint, lightly packed and chopped
« 3.4 kaffir lime leaves

Directions Dictions

1. Sauté the shrimp in vegetable oil over until cooked through, about 3-4 minutes. Drain any liquid and place in @ mixing bow " st sooa A e Doy
2. Add chili paste and ime juice un combined. 2 e bt

3 Remove the stem from the kaffi leaves. Cut the leaves, lemongrass stalks, and shallots into very thin sivers. 3 o s e G
4. Add kaffir, lemongrass, shallots and mint leaves to the shrimp and toss until combined. i ':;:.rhm,.. T
5 Serve immediately or chilled 4 s o e s

PRS-

RECIPE AND PHOTOS COURTESY OF DELLA CUC

OVERA, ALL RIGHTS RESERVED

OEBPS/Images/image00443.jpeg
Thai Shrimp Salad

SERVES 3-4 AS A SIDE DISH

15 MINS 5 MINS 20 MINS

Ingredients

+ 400 grams shrimp, peeled and deveined

+ 11sp vegetable oil

+ 3 tbsp sweet thai chili paste

« juice of alime

« 1 stalk lemongrass, only white parts

+ 2 medium shallots

+ 112 cup fresh mint, lightly packed and chopped
+ 34 Kaffir lime leaves

Directions

OEBPS/Images/image00249.jpeg
80% 80% 80%

Site R e (e (U< T cer 1
rferl.mobi 3.354 4.526 6.344
npr.org 5175 13.542 26.377
theguardian.com 20.87 18.82 22.177
m.bbc.com/news 8.392 15.875 18.067

america.aljazeera.com 6.272 8.022 63.756

OEBPS/Images/image00448.jpeg
) Title Goes Here Some A And Others Have Lengths That are Longer

Such as This

OEBPS/Images/image00248.gif

OEBPS/Images/image00449.jpeg
i o | i o

ategory ategory
Video Title Goes Here S \re d Others Have L
ich as Thi

OEBPS/Images/image00247.gif
#3d9ecf

#4dadad

#999999

#ebebeb

#eb624e

#ddab39

#eab550

Tooltip text at left Tooltip text at right

G

Hereis somehelp text.

It's meant to useful to
you na time of need

Hereis somehelp text.
It's meant to useful to
youina time of need.

Editorially m Editorially

OEBPS/Images/image00446.jpeg
APPLICATIONS

@A A E A @

OEBPS/Images/image00246.gif
@iasonsantamaria

Buttons

soat
X o X

‘Small (with icons)

T T T
wediu

=] [

Medium (withiicons)

T I W sy
R T) e

Large (with icons)

T T)
) T S

OEBPS/Images/image00447.jpeg
Live Streams

Video Title Goes Here

Watch Now

Some Are Short

Watch Now

And Others Have Lengths That are

Longer Such as This

Watch Now

Featured

OEBPS/Images/image00245.jpeg
e T T = coonrow | e ot] vaionm ik | cormrnana
Learn More » Sign on to PINACLE®» ‘What is PNC Purchase Payback How PNC Purchase Payback Works

(__sgnon] ([Nemswp]

Add Reminder Search Transactions ~ Export Al Print Spend Print Reserve

TRATES

GetStarted »

Enroll Mobile Devi

Learn'More™ »

Check Rates
Savings History Customize Your Pig i) Add SignOn

o O e o pooon |
+ Add transaction ull Show Bars (oevne e)

OEBPS/Images/image00244.gif
THE SEARCH/BROWSE' HER EMOTIONAL CONTEXT SHE’S OBSESSED WITH PINTEF

When talking 1o women they often mentoned got Her home s great source o oy wher,unlke workoreven faff Echoning what you uncovered i your “Tnerne Use and Experienc
Iaoking for something specic Bt they en the Gomalmwher h has th most aulonmy, Slf-cxpresSOn Ml March 3014, worme have an ¢aNonal CoRTecton it Pares
e they found the nfomation ihey were looking. IR <ot o ec % he hngs et e tht

RS1E1g powte nd contl vt domains ol hrs i

THEMES & INSIGHTS. THEMES & INSIGHTS.

SHE SEES COMMERCE AS A SI NAVIGATING THE NAVIGATION

Similarly, she mentioned often that being able to purchase or find! If looking for something specific, people would often simply search in ¢
website that IS recommends would make her life easier. search on S We observed some use of the top navigatior
People when Going to the website would click on content, not the navi

auores HOWMI quores HOW MIGHT
Wit s i e shunpes Wl ik oo g i wod WMWMARS “Onc | geton e v | hargo o ras o gy on, WM Semsity
o e o e webe S e e DM esed o o vt e [ty
Ty o e s e e ey e, snd e s ol
gt wd heh el vl o s Gy G ool W e
oy e et ok ot o ey i gt om0 y9 0 1od e K5 e e v
i oy o e, o . Lt 0 ha st oo
o, W o S e
a o ks 0.0 Ry "

e e o
s o g o e g a1 sz 0 st
a4

ey, remins e of b |
a2 8 e e e

OEBPS/Images/image00243.jpeg
AAAAAAA

OEBPS/Images/image00242.jpeg
58 sl el Belchev. D RAfram, D Rara, v Vasces. Mihael Siauderosann
el Andrea 2ot il Kim.Jof Meers, St e Lafon, Joe Golca, Akl Sabfarwl,
Roskhge o, Carol Pate, ko Bt St Stoc. Bandon Thomas. Jam Mok Juian
1D Grarid, R Kiogh, Pt K, lan Scal et Thakia, Mork Wekde. othan Doy
Clyton Lo, st Prr. Danies s, o . Tha Ko K, Micnel Logenan. Samue
Suantion, Daen Swan, Tiovet Barnes. Herig OIth, Zechary Morg. Prick Chanpou,

iy W, s Ry, 490U e, Ny e, Loy Schcones, Moriah El, Ky Mfanon, Aru Tadst, Sged
e e o) il Grovte Jongen, Cisian Moveicia, Kistion Malaors, Mieko Kemme, Alon Cone, Sk Stocg
s, Jnes Clocke, Abdetioat cnert, Moo Sxanic, S Hordy. Lars Kiosis Sibjo, Joil Sabesondch. 1| Fogarty. Aaion Eche, P
Fangaty. Dove Thackermy, Matihew Lynch, i Raithn Hoon. P Thomaz. Aves Boldes. Pl Wikde L=nar Flecanche. Fiog Pt L

e, St Cass Thomos Horre O .0 it Shiachs, 1o Romero, Bion Siinbosn. Mork Casee Bon Aede, S

4, B Mots, Patch Schiner, Cais Szeto, Mark Spikees. bt Ser, Pl B
ke, Faban Echenberger. Ples Dorteor, MOl
i o Lnes. Peter Vo Dex Fs. Michi D, Chisogine Guiene, Tom MEard. Nagy
i Je Baes. Jorge Mecirano. Richared Mages, Berjomin Dentorto, Ben Van Treur, Andrea
{3653 P, David Sion, R Bor v, Joh Fonis. Evie M, Meon Frvic. An e 1
08 U K e, Brert Mo, Kinjrices, Cament VA, Mo 233 Lot Grekabo Teogipe.
L B ol e St M. S MEh. Vineszn R, Nk Vo D Sangen. ark Wets.
Torres. Alex e, o B Natareyia o, DaielKeine, Lubass Sk, o 3 Aderacn, Disctich
i Mool Guoro, Lacy lexiniior Valato Dl Fon Nicola e Wichas! Bratwto, Dovgas Lamber, tan Hoggaton
sl oy, Jo Crddock i) Mol Arcerion. Abbishuk Sochan. Nl Sugosi, Swosh Kumir Malug, Perves
% iy Ehametesn Logic Yoo Bl meniery, 1 Ditkourl. Janat Novt . S Chsmants, Gh
Manon Mich, Nkl Byan Erigasz, Diane Domiage, Renon Txtes. Pete Ban; Hoogesh
"G Bl Hapkim, Anralyn Al Bt Senwirs, Mos Lol Supe facn (o, Mgl A, Exvaas.
Mo, Joime Lecn, Tomas Porrainas. Jossia Koliey, icol T010sa, Honty Nonza’ Za0os. N W
i Tlaryun Chen, Sormpop Sukszwo, Sephen Seng, Kimoo. Matheus Baumgar, Hononeo Carpeso.
R, g Py L1 i, Carko Exchlante D100 Fick Ko, FLagh, A S, s Le0e, EOWA CHurg, ncat
urs Angell Albeco et Stova Beck. Cloudowtnc. 080 Rojias, G Visig, Aaron Rutey, By Hervdra Wi, Chnsin Carol
. Kt Syriey,Criw Che Stans, Mekani Sunt K Sy, Morgar i), Grsiéh, Logan Franki, Domen Cartr Corey
o The Melc Parth Uruan, . Wchau Frnk Ko Kewbown,David Usios, Hosthor Beyant. Monnimad Nadin At Sreg Culley
Blafuba, Jess2 Gragpmann, Carine Rovasn. Simon Wilkock, Loonats Di L Fuothe. Vo) Skimanns. K e, Chat

Craig yies Dm0 ezt Davel Devamic, Marcs g
o Weamer o
Diyneduran &

sci, Wirko Enactich, Sran Wangio,

e, Pk Stacr Jerermis Do

o ﬁmm»«ﬁ:%mw \«-w;mfmmr};uw . Adhu Vo Dif. Pl Bauer, Motfns

i Mot Yeongihs Jo Ben Wosrs. Jonathan Colyo Moyt Saymon Gaybek, S2nooics Ll Halcom 0.

GO Ryl By, Ao Perel, s Buters. Mercefis Paimitcass, erome Zuch. S Mata Ao, Faul C Wirtgies
s man o Sron st eor S Tin i G 40, s Lt S e 2

. ot Mese s Mafco Leset, Riok Pk ChisiophSipet Mar SUeet Tesene Wil Andy Gengea, Mot Wt

. esse Kelsey, Alfia SNk, Kiso Scriniont, A L. Geppe S<nppaiceo, MArcs Solo De Ly Fotnte. Al

e s o miseomi hoda i, o i s, . i DU M
R i\ e Gt N s Wi, o . Cro i, o S, ot

Sabagtan Bigschérik Chiophe Coutouki, iy W.Desiains, Syvai Py, D Hauser Mchtie Foly, Victor Al 5
il e

bur Web Design Community Is Responsive, Too.

These pages are dedieated o aur fovely community, to everybody who s been supporting us over the years
Withalt you his book wouldit be passible. We appreciate yaur trust. Yau are Smashing, and you shauld know that

i oy Moy, o Popa, onile Vit Lvs 0. D Scnoene, Doaciol Tk, Gideon Casp, urt Stema.
o ot ek o s il At v S Ty Lok Gt Gy Gt
o e, M Moy, Lochir Bonn. v, Ao Al s Gnenas. o Labehmin, ecn e
e L e et T B oo e, o Sab Mohey S
vk Watsc Rty Sheheni, ENs Al Drvo oo, Pl sk WA o ernciucenis,

A Famaring Shanian icks, Wl Moo S L. ayan Rapie. Jom B, Sarmel Fodrovel, B &
e, oty S, Francico Totho, Barjanin Mins: Ascanar oo, Gy A Marcn Seii, Lol Wabied

2 s, Dy Toli. Baiaer Pt s Acto Mz, Mareie P 352 R, Anj. Mt De| 230, Rc<ar e
@ervickas. Mire Dien, Trovor D Thitow, Ay Tocgunrod, Sopien O Luke Undorwooa. Jobn Bice, Jeamy Veare.
. O Ay, Hhvivel Brybafse, Fgscueak Productions. (. Loyd Saulinugh. Tou WG, Siuia Venicss - Monainad
Al Alam: Serti Doy, Wiy, Dilp Gupto. Stefan Meisingo Yo o0 Loo, Nort=h B Balaswron, Tania AEIn,
Eitabin, Olowafern, ALt SHrsath,Jochimlic: moc, Mot s Akart Witen Crote Jony L. kol Vi, Jos
4, A Sou=3, Jesscan Prate Jora Wetle st et Ch, Hore, Mich Moris. D Scrbe. Rodrio GAllaulios
- Dy Vil don Larwrocs, Daniel P Chio, Wosd Hobblik, Fiaran ey, Carlos Vil Moree Gotsa, Andon

OEBPS/Images/image00241.jpeg
ek, Runointioots. Ascranin Grigor, Sanal Agravel Kamels Kandil Arevik Tharae Mot Viodiale ol
Aok i Pavel Pomerantuey, An Biane Tudh¥a skt Michal LeSniowsk), Vanesza Schim, alero £

o, Metanie Wiamann. Evantes Ui Victar Rociauez e, Meswyn Vi Goener, Alex Weca

R, Anron Voneon. Gobe) Consiantin, Sebastian Zimmarman. s Batey, Redfon Iedin,

‘Atian Robis Frans Thie Lasee Laube Scans. sentne’ FAlcwska, Coft Snih, M Schm, Asesey

Bllben. Braciey Pale, Luks Gusthitauer. Ko Forses. Mijageka, Jrdy Vai Raal i) Crssyt Hap

Socar.Simon Busborg. Oraur Erl, Jowstetn, Lsonrd Eshuls, oo Dihgoe. Kiig Walket Aiok 1) Mims
Torenigen, Gt Aok, Jodalis Resamyel Pl Escolat Seles MAES! MAUce Naet Ning NAUIGW!

ocescho,Chi Brondicle §1t Ry, Kasoars Miborg. Wichel Aoy, Maogn o Kncicka, Matias i Crtsy K. Borion By Ktz

‘Aavon Fatkar B Picci, Gabor Lo, Stofan i, Baul CaothS AIGE Maciek, WInied Ve Lo IONU BHS SN A onks. Tobias' Soeher, o THRKS.
gl il Aot Ao, i Koo olon, Dk’ Biwlus Brymy Gl Mg BEan D e N Wohri,

e e, S Do G e i e e R ol o e
e oD ot o o Koo, P et Ffdeam A ol ST KARS B Tornss oo g Eus
i o i S oy AR A AT ol 1 s F e o W
e e Som o i R A T Lo e e
s Wik Pl S0 Croghnsd Lk oo, s Wb, MKe Tt o Viloess, Bl Praessti, Licus 0 S1u. Boonn Radesk
o oS e i e o
. s A s o e i e o e i s
e o P o it e S i e A i K
o e s e o VR ot (e (O B
. Martas Kaveckss. Samuray, Glovanal Micocel, David Mounan, Yaptak Ayazog
B e P o e o
R s o i el g
o e e P i
Wi, o Sari. Do Chosy: Mot Gotobonstl P bt ARSI RCRS AR s A e aite ge. over
Cronby, Joer Goodagebiuur, Richard Reddy. Lukis Ghchtor, Keisting Gotth, Patiticda,, Kosn Kraten, Flocia jom, lats Mccfornict Jess
T S S s S ol eTALe
A U et I A L i B il
e e R R LS s 5
T e e Mo e e
e ek e s T S
e e ey S e e S e DL el
S o Bovos ket Srak A isorn. MECAHe! CabSEhES IS
Deryck Oftate Espinel, Joi
Yogev Amia, Emial

o Fosrst, Avsai:
e, Savory Bori,
Mo, David Maniy

i Tomosz B
e Wognet.
e o Serod
i Fa Drum
o1 Do Jonge: Th
o Wiarian, Aicio
0 Borias. Fubiy
ko Hovmen
Jothson, M 0 o ksl Ui
Baitor o kyto s Ay Torrin Al
Sohtia Leoi i ks Rudolon, Mk st
esaware com, i A o e Ik Crawtor, Torase K
et Bdgfc. = Furyan. atel Kook,
fech Whions, Jonnthan Mirkov.
Ich Lo Ladeen. Exc Colamropa. Debra Niedsrmiler Chafivs. Sl Al Rod. ekenidiek, Seri TRAgh ik, Kuplaes=ric, Gabii Tomesc,
Cotewpic. Photesion, Alex Goets: £ Dusal, Benjarin Lsin, Bing. Jocie Wareon. o Gossar, P
loe, Fek Von Gorka Jofge D1 G, Gabiel i+ o Fare, Kely D, K
Py, Ot Petor Togo. Jasper Varstoeqe. Emi Foramann, Elena Xehan e 3 < Franc. imaiel Barny, Luce
Gaar, ol ey, Siman G, Pl Deaton, Jon S, Rabert A G i, Do olche, ouraionc,
S Vet v e D, Jo e st 5 i e Msie 0 L, Tor|
kv Caw Haneon, Sean Hestor Antone Deten, SaUmaR PO celo riner A, Dessy Wivn
Oan Suva,soms Lo 2 Hoy, Dionno Akt Ky T
At Lobutows, Stopna e P Sean esrord
Puckichowski, Na i - A B Jomuey
o, Mot Calleoud, Codtaier, Uit Larmoi MU P Satank
Gorig. Jlln Yo, Aksht Goat. Rok iz Wabo (o), Zchika O
L oo, Jan Grae. B Saaf Rtva, edar Angla, P VB Fabion o, Tyl ki, T
it Ricks. Cola S, Dai Pedooje. S Welmore. paler Conpany ey Zader Detssa
Hanvcn. Bob Poiachi. Gathier loy, Ay G, Webieketbe: G, Pl Citstne Tt Kabine Caf i
. Hatta W O Couin. Achan Beney. Vi Tihal John Saiee Zaeh WO, Shors Hidiootomo, Jf Dase, nan Khan Pl D0l
cor Byt Bent Jo Paker, Nickiniy Vel il Pabio Coriferas
"o, Romancs Toutopi. Moy Wichael i @ i s o o S Lot o e e
Fovwe Greybe. Guilmo Boun), Iner Wgamitdinos. Jonnathan Tan Tee Chlang. Jmes
e, Sitaney Vananiian Eugents Seguceva. s Pore: Milamnde Bl Sesha £ngor, Mchaet Ganan. Foer Fetear, Vitor Aganake, Ppe
Scton, Craig Hartippton, Daman Swmole Kevi Danieson; Kast L Kot Py Nancy W, Nickis Mindbjery Jokaesen. Low Fuler,
S B, Mol Sl Duane Ada, Srandon K PRI e Sy Mt Ause. Dok Wasiluim, Wee Cla, i Tryy
Stiyon Dar Rgan, Tom Offinga, 1 fang, A Safy. e S ereioio
Gty Col, e Masingrove: Vasani Kshramcarty, K Caiepl
Marco Magel. Mangot Bodosa. ina Gioova, o Danyer, Calin B
N Cotn Wl Tl Wi Veease. o Shiyur, DOV
Moo T Sy, Aysn Yikkanin Do Caas, sce Butt: Roget Ao
gt Daviol Ao, Nchalns Fipert, Tomas Wik, iy Bemy NN
My it Ol Jondon Magek. Saumiry Doy Oler Baum, DA
A e, B3¢0 Cofins, Mo oses P, i Sranen, Thottan
(y, Em R, s Ao, it ecey. Kyourt Bang: G Bolanoy Ka

OEBPS/Images/image00330.jpeg

OEBPS/Images/image00451.gif
Applications

OEBPS/Images/image00331.jpeg
EIl FEN WERRB

OEBPS/Images/image00452.gif
Applications

A L 0 P

OEBPS/Images/image00450.jpeg
atog y
Video Title Goes Here Some Are Short And Others Have Lengths That are Longer
Such as This

OEBPS/Images/image00433.gif
‘ SMASHING

MAGAZINE

Publications Shop News Events YourAccount ContactUs

Lorem ipsum dolor sit amet,
consectetur adipiscing elit. Nulla at
purus ipsum. Aliquam lacinia non
fisus eu rhoncus.

Lorem ipsum dolor sit amet, consectetur adipiscing elt. Sed sed laoreet quam. Etiam vehicula vel enim non
commodo. Integer quis eros sed ante semper ullricies id at justo. Integer vel cursus dui. Dus vitae thoncus
sem. Donec sed odio sodales, molls ante id, dapibus dolor. Curabilur feugiat metus vel nisi vestibulum
faucibus. Nunc iaculis felis eu arcu malesuada hendrerit. Duis vehicula dictum magna eu hendrerit Vestibulum
mauris nibh, hendrerit eget nisl suscipit, congue gravida urna. Morbi a eros aliquet, dictum sem vel, commodo
neque. Phasellus sit amet nulla risus. Curabitur tempor lacinia nibh ac eleifend. Nam egestas et est fincidunt
suscipit. Fusce facilisis venenatis erat, vitae varius lectus. Maecenas commodo, urna vitae tempor vulputate,
lectus justo malesuada enim, non tincidunt ipsum arcu eget sem.

OEBPS/Images/image00434.gif
‘ SMASHING

MAGAZINE
Publications Shop News

Lorem ipsum dolor sit amet,
consectetur adipiscing elit. Nulla at
purus ipsum. Aliquam lacinia non
fisus eu roncus.

Events Your Account ContactUs

Lorem ipsum dolor it amet, consectetur adipiscing eit. Sed sed laoreet quam. Etiam vehicula vel enim non
commodo. Integer quis eros sed ante semper ultricies id at justo. Integer vel cursus dui. Duis vitae rhoncus
sem. Donec sed odio sodales, mollis ante id, dapibus dolor. Curabitur feugiat metus vel nisi vestibulum
faucibus. Nunc iaculis felis eu arcu malesuada hendrerit. Duis vehicula dictum magna eu hendrerit Vestibulum
‘mauris nibh, hendrerit eget nisl suscipit, congue gravida rna. Morbi a eros aliquet, dictum sem vel, commodo
neque. Phasellus sit amet nulla risus. Curabitur tempor lacinia nibh ac eleifend. Nam egestas et est fincidunt
suscipit. Fusce facilisis venenatis erat, vitae varius lectus. Maecenas commodo, uma vitae tempor vulputate,
lectus justo malesuada enim, non fincidunt ipsum arcu eget sem.

OEBPS/Images/image00431.jpeg
BRI eSS Record-breaking Winter

Brings Another School-
: free Snow Day for
Eea s ~ Hillsborough Kids

OEBPS/Images/image00432.jpeg
IR RRpE Lt SESSSSS Record-breaking Winter Brings

Another School-free Snow Day

I l for Hillsborough Kids

OEBPS/Images/image00437.gif
s e e [0 SMASHING

OEBPS/Images/image00438.gif
MAGAZINE

OEBPS/Images/image00435.gif
Publications Shop News

Lorem ipsum dolor sit amet,
consectetur adipiscing elit. Nulla at
‘purus ipsum. Aliquam lacinia non
fisus eu rhoncus.

& SMASHING

MAGAZINE Events YourAccount ContactUs

Lorem ipsum dolor sit amet, consectetur adipiscing elit: Sed sed laoreet quam. Etiam vehicula vel enim non
commodo. Integer quis eros sed ante semper ultricies id at justo. Integer vel cursus dui. Dus vitae rhoncus
sem. Donec sed odio sodales, molls ante id, dapibus dolor. Curabitur feugiat metus vel nisi vestibulum
faucibus. Nunc iaculis felis eu arcu malesuada hendrerit. Duis vehicula dictum magna eu hendrerit Vestibulum
mauris nibh, hendrerit eget nis! suscipit, congue gravida urna. Morbi a eros aliquet, dictum sem vel, commodo
neque. Phasellus sit amet nulla risus. Curabitur tempor lacinia nibh ac eleifend. Nam egestas et est tincidunt
suscipit. Fusce facilisis venenatis erat, vitae varius lectus. Maecenas commodo, umna vitae tempor vulputate,
lectus justo malesuada enim, non tincidunt ipsum arcu eget sem.

OEBPS/Images/image00436.gif
ﬁmg‘lg Publications Shop News Events YourAccount ContactUs

OEBPS/Images/image00439.jpeg
Header

Main

Footer

OEBPS/Images/image00440.jpeg
Header

_ e

Footer

OEBPS/Images/image00441.jpeg
Header

Main

Footer

